Comparative assessment of NOIR-SS and ddPCR for ctDNA detection of EGFR L858R mutations in advanced L858R-positive lung adenocarcinomas

Abstract Genotyping epidermal growth factor receptor (EGFR) is an essential process to indicate lung adenocarcinoma patients for the most appropriate treatment. Liquid biopsy using circulating tumor DNA (ctDNA) potentially complements the use of tumor tissue biopsy for identifying genotype-specific...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daisuke Akahori, Yusuke Inoue, Naoki Inui, Masato Karayama, Hideki Yasui, Hironao Hozumi, Yuzo Suzuki, Kazuki Furuhashi, Tomoyuki Fujisawa, Noriyuki Enomoto, Yutaro Nakamura, Takafumi Suda
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/eec1572886f54d0eab80cbef0c524f56
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Genotyping epidermal growth factor receptor (EGFR) is an essential process to indicate lung adenocarcinoma patients for the most appropriate treatment. Liquid biopsy using circulating tumor DNA (ctDNA) potentially complements the use of tumor tissue biopsy for identifying genotype-specific mutations in cancer cells. We assessed the performance of a high-fidelity sequencing method that uses molecular barcodes called the nonoverlapping integrated read sequencing system (NOIR-SS) for detecting EGFR L858R-mutated alleles in 33 advanced or recurrent patients with L858R mutation-positive lung adenocarcinoma revealed by matched tissue biopsy. We compared NOIR-SS with site-specific droplet digital PCR (ddPCR), which was taken as the reference, in terms of sensitivity and ability to quantify L858R variant allele fractions (VAFs). NOIR-SS and ddPCR had sensitivities of 87.9% (29/33) and 78.8% (26/33) for detecting L858R alleles, respectively. The VAFs measured by each assay were strongly correlated. Notably, one specimen was positive with a VAF of 30.12% for NOIR-SS but marginally positive with that of 0.05% for ddPCR because of a previously poorly recognized mechanism: two-base substitution-induced L858R (c.2573_2574delinsGA). These results indicate that NOIR-SS is a useful method for detecting ctDNA, potentially overcoming a limitation of ddPCR which highly depends on the binding ability of primers to specific targeting sequences.