Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA–induced metabolic stress in reconstructed human skin

Abstract Solar ultraviolet longwave UVA1 exposure of human skin has short-term consequences at cellular and molecular level, leading at long-term to photoaging. Following exposure, reactive oxygen species (ROS) are generated, inducing oxidative stress that might impair cellular metabolic activity. H...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Thi Phuong Lien Ung, Seongbin Lim, Xavier Solinas, Pierre Mahou, Anatole Chessel, Claire Marionnet, Thomas Bornschlögl, Emmanuel Beaurepaire, Françoise Bernerd, Ana-Maria Pena, Chiara Stringari
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/eec8ea68d4c94ca09d655154a5ef399d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:eec8ea68d4c94ca09d655154a5ef399d
record_format dspace
spelling oai:doaj.org-article:eec8ea68d4c94ca09d655154a5ef399d2021-11-14T12:20:56ZSimultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA–induced metabolic stress in reconstructed human skin10.1038/s41598-021-00126-82045-2322https://doaj.org/article/eec8ea68d4c94ca09d655154a5ef399d2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-00126-8https://doaj.org/toc/2045-2322Abstract Solar ultraviolet longwave UVA1 exposure of human skin has short-term consequences at cellular and molecular level, leading at long-term to photoaging. Following exposure, reactive oxygen species (ROS) are generated, inducing oxidative stress that might impair cellular metabolic activity. However, the dynamic of UVA1 impact on cellular metabolism remains unknown because of lacking adequate live imaging techniques. Here we assess the UVA1-induced metabolic stress response in reconstructed human skin with multicolor two-photon fluorescence lifetime microscopy (FLIM). Simultaneous imaging of nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD) by wavelength mixing allows quantifying cellular metabolism in function of NAD(P)+/NAD(P)H and FAD/FADH2 redox ratios. After UVA1 exposure, we observe an increase of fraction of bound NAD(P)H and decrease of fraction of bound FAD indicating a metabolic switch from glycolysis to oxidative phosphorylation or oxidative stress possibly correlated to ROS generation. NAD(P)H and FAD biomarkers have unique temporal dynamic and sensitivity to skin cell types and UVA1 dose. While the FAD biomarker is UVA1 dose-dependent in keratinocytes, the NAD(P)H biomarker shows no dose dependence in keratinocytes, but is directly affected after exposure in fibroblasts, thus reflecting different skin cells sensitivities to oxidative stress. Finally, we show that a sunscreen including a UVA1 filter prevents UVA1 metabolic stress response from occurring.Thi Phuong Lien UngSeongbin LimXavier SolinasPierre MahouAnatole ChesselClaire MarionnetThomas BornschlöglEmmanuel BeaurepaireFrançoise BernerdAna-Maria PenaChiara StringariNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Thi Phuong Lien Ung
Seongbin Lim
Xavier Solinas
Pierre Mahou
Anatole Chessel
Claire Marionnet
Thomas Bornschlögl
Emmanuel Beaurepaire
Françoise Bernerd
Ana-Maria Pena
Chiara Stringari
Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA–induced metabolic stress in reconstructed human skin
description Abstract Solar ultraviolet longwave UVA1 exposure of human skin has short-term consequences at cellular and molecular level, leading at long-term to photoaging. Following exposure, reactive oxygen species (ROS) are generated, inducing oxidative stress that might impair cellular metabolic activity. However, the dynamic of UVA1 impact on cellular metabolism remains unknown because of lacking adequate live imaging techniques. Here we assess the UVA1-induced metabolic stress response in reconstructed human skin with multicolor two-photon fluorescence lifetime microscopy (FLIM). Simultaneous imaging of nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD) by wavelength mixing allows quantifying cellular metabolism in function of NAD(P)+/NAD(P)H and FAD/FADH2 redox ratios. After UVA1 exposure, we observe an increase of fraction of bound NAD(P)H and decrease of fraction of bound FAD indicating a metabolic switch from glycolysis to oxidative phosphorylation or oxidative stress possibly correlated to ROS generation. NAD(P)H and FAD biomarkers have unique temporal dynamic and sensitivity to skin cell types and UVA1 dose. While the FAD biomarker is UVA1 dose-dependent in keratinocytes, the NAD(P)H biomarker shows no dose dependence in keratinocytes, but is directly affected after exposure in fibroblasts, thus reflecting different skin cells sensitivities to oxidative stress. Finally, we show that a sunscreen including a UVA1 filter prevents UVA1 metabolic stress response from occurring.
format article
author Thi Phuong Lien Ung
Seongbin Lim
Xavier Solinas
Pierre Mahou
Anatole Chessel
Claire Marionnet
Thomas Bornschlögl
Emmanuel Beaurepaire
Françoise Bernerd
Ana-Maria Pena
Chiara Stringari
author_facet Thi Phuong Lien Ung
Seongbin Lim
Xavier Solinas
Pierre Mahou
Anatole Chessel
Claire Marionnet
Thomas Bornschlögl
Emmanuel Beaurepaire
Françoise Bernerd
Ana-Maria Pena
Chiara Stringari
author_sort Thi Phuong Lien Ung
title Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA–induced metabolic stress in reconstructed human skin
title_short Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA–induced metabolic stress in reconstructed human skin
title_full Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA–induced metabolic stress in reconstructed human skin
title_fullStr Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA–induced metabolic stress in reconstructed human skin
title_full_unstemmed Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA–induced metabolic stress in reconstructed human skin
title_sort simultaneous nad(p)h and fad fluorescence lifetime microscopy of long uva–induced metabolic stress in reconstructed human skin
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/eec8ea68d4c94ca09d655154a5ef399d
work_keys_str_mv AT thiphuonglienung simultaneousnadphandfadfluorescencelifetimemicroscopyoflonguvainducedmetabolicstressinreconstructedhumanskin
AT seongbinlim simultaneousnadphandfadfluorescencelifetimemicroscopyoflonguvainducedmetabolicstressinreconstructedhumanskin
AT xaviersolinas simultaneousnadphandfadfluorescencelifetimemicroscopyoflonguvainducedmetabolicstressinreconstructedhumanskin
AT pierremahou simultaneousnadphandfadfluorescencelifetimemicroscopyoflonguvainducedmetabolicstressinreconstructedhumanskin
AT anatolechessel simultaneousnadphandfadfluorescencelifetimemicroscopyoflonguvainducedmetabolicstressinreconstructedhumanskin
AT clairemarionnet simultaneousnadphandfadfluorescencelifetimemicroscopyoflonguvainducedmetabolicstressinreconstructedhumanskin
AT thomasbornschlogl simultaneousnadphandfadfluorescencelifetimemicroscopyoflonguvainducedmetabolicstressinreconstructedhumanskin
AT emmanuelbeaurepaire simultaneousnadphandfadfluorescencelifetimemicroscopyoflonguvainducedmetabolicstressinreconstructedhumanskin
AT francoisebernerd simultaneousnadphandfadfluorescencelifetimemicroscopyoflonguvainducedmetabolicstressinreconstructedhumanskin
AT anamariapena simultaneousnadphandfadfluorescencelifetimemicroscopyoflonguvainducedmetabolicstressinreconstructedhumanskin
AT chiarastringari simultaneousnadphandfadfluorescencelifetimemicroscopyoflonguvainducedmetabolicstressinreconstructedhumanskin
_version_ 1718429263133147136