Forecasting Stock Exchange Index Using Particle Swarm Optimization Comparing to Traditional Models
The stock market is one of the most attractive investment choice from which a large amount of profit can be earned. This study presents a PSO-based methodology to deal with Stock market index prediction. The study showed superiority in applicability of the proposed approach by using Tehran Stock Exc...
Guardado en:
Autores principales: | Darush Damoori, Darush Farid, Morteza Ashhar |
---|---|
Formato: | article |
Lenguaje: | FA |
Publicado: |
Shahid Bahonar University of Kerman
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eedd34e3472e4ac985e50ad35f1461d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Day-Ahead Forecasting of the Percentage of Renewables Based on Time-Series Statistical Methods
por: Robert Basmadjian, et al.
Publicado: (2021) -
Forecasting Fisheries Production in Indonesia
por: Bayu Rhamadani Wicaksono, et al.
Publicado: (2020) -
Investigation of denoising effects on forecasting models by statistical and nonlinear dynamic analysis
por: Farhang Rahmani, et al.
Publicado: (2021) -
Prediksi Harga Saham Menggunakan Metode Brown’s Weighted Exponential Moving Average dengan Optimasi Levenberg-Marquardt
por: Dini Indriyani Putri, et al.
Publicado: (2021) -
Penerapan Metode Holt-Winters Untuk Peramalan Penjualan (Studi Kasus Keripik Pisang Pigela UD. Haza Food Surabaya)
por: Anis Zubair, et al.
Publicado: (2021)