Forecasting Stock Exchange Index Using Particle Swarm Optimization Comparing to Traditional Models
The stock market is one of the most attractive investment choice from which a large amount of profit can be earned. This study presents a PSO-based methodology to deal with Stock market index prediction. The study showed superiority in applicability of the proposed approach by using Tehran Stock Exc...
Enregistré dans:
Auteurs principaux: | Darush Damoori, Darush Farid, Morteza Ashhar |
---|---|
Format: | article |
Langue: | FA |
Publié: |
Shahid Bahonar University of Kerman
2011
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/eedd34e3472e4ac985e50ad35f1461d6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Day-Ahead Forecasting of the Percentage of Renewables Based on Time-Series Statistical Methods
par: Robert Basmadjian, et autres
Publié: (2021) -
Forecasting Fisheries Production in Indonesia
par: Bayu Rhamadani Wicaksono, et autres
Publié: (2020) -
Investigation of denoising effects on forecasting models by statistical and nonlinear dynamic analysis
par: Farhang Rahmani, et autres
Publié: (2021) -
Prediksi Harga Saham Menggunakan Metode Brown’s Weighted Exponential Moving Average dengan Optimasi Levenberg-Marquardt
par: Dini Indriyani Putri, et autres
Publié: (2021) -
Penerapan Metode Holt-Winters Untuk Peramalan Penjualan (Studi Kasus Keripik Pisang Pigela UD. Haza Food Surabaya)
par: Anis Zubair, et autres
Publié: (2021)