Cox Regression Based Modeling of Functional Connectivity and Treatment Outcome for Relapse Prediction and Disease Subtyping in Substance Use Disorder
Functional magnetic resonance imaging (fMRI) has become one of the most widely used noninvasive neuroimaging technique in research of cognitive neurosciences and of neural mechanisms of neuropsychiatric/neurological diseases. A primary goal of fMRI-based neuroimaging studies is to identify biomarker...
Guardado en:
Autores principales: | Tianye Zhai, Hong Gu, Yihong Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eeeb633359644db2ba2cbbcc347121c6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Vector Auto-Regressive Deep Neural Network: A Data-Driven Deep Learning-Based Directed Functional Connectivity Estimation Toolbox
por: Takuto Okuno, et al.
Publicado: (2021) -
Association of Postoperative Radiotherapy Delay with Relapse and Metastasis in Women with Breast Cancer Using Penalized Cox Regression
por: Fatemeh Homaei Shandiz, et al.
Publicado: (2021) -
Effective Attributes in Colorectal Cancer Relapse Using Artificial Neural Network and Cox Proportional Hazards Regression
por: Saeedeh Pourahmad, et al.
Publicado: (2014) -
Modelling Ocean Connectivity
por: Margherita Paola Poto, et al.
Publicado: (2021) -
Gene expression associated with individual variability in intrinsic functional connectivity
por: Liangfang Li, et al.
Publicado: (2021)