Generalizability of deep learning models for dental image analysis
Abstract We assessed the generalizability of deep learning models and how to improve it. Our exemplary use-case was the detection of apical lesions on panoramic radiographs. We employed two datasets of panoramic radiographs from two centers, one in Germany (Charité, Berlin, n = 650) and one in India...
Enregistré dans:
Auteurs principaux: | Joachim Krois, Anselmo Garcia Cantu, Akhilanand Chaurasia, Ranjitkumar Patil, Prabhat Kumar Chaudhari, Robert Gaudin, Sascha Gehrung, Falk Schwendicke |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ef0ba152d5814f2e9b3dca9c1db648df |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A regionally generalizable, image-guided strategy for stereotactic TMS targeting
par: Peter Fox, et autres
Publié: (2021) -
Perspectives on the challenges of generalizability, transparency and ethics in predictive learning analytics
par: Anuradha Mathrani, et autres
Publié: (2021) -
A generalizable and accessible approach to machine learning with global satellite imagery
par: Esther Rolf, et autres
Publié: (2021) -
Generalizable deep temporal models for predicting episodes of sudden hypotension in critically ill patients: a personalized approach
par: Brandon Chan, et autres
Publié: (2020) -
Cross-cultural validation of the stroke riskometer using generalizability theory
par: Oleg Medvedev, et autres
Publié: (2021)