Transmural Distribution of Coronary Perfusion and Myocardial Work Density Due to Alterations in Ventricular Loading, Geometry and Contractility
Myocardial supply changes to accommodate the variation of myocardial demand across the heart wall to maintain normal cardiac function. A computational framework that couples the systemic circulation of a left ventricular (LV) finite element model and coronary perfusion in a closed loop is developed...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ef10d2fbc275459a9881a8075a4d259d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ef10d2fbc275459a9881a8075a4d259d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ef10d2fbc275459a9881a8075a4d259d2021-11-30T19:18:03ZTransmural Distribution of Coronary Perfusion and Myocardial Work Density Due to Alterations in Ventricular Loading, Geometry and Contractility1664-042X10.3389/fphys.2021.744855https://doaj.org/article/ef10d2fbc275459a9881a8075a4d259d2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fphys.2021.744855/fullhttps://doaj.org/toc/1664-042XMyocardial supply changes to accommodate the variation of myocardial demand across the heart wall to maintain normal cardiac function. A computational framework that couples the systemic circulation of a left ventricular (LV) finite element model and coronary perfusion in a closed loop is developed to investigate the transmural distribution of the myocardial demand (work density) and supply (perfusion) ratio. Calibrated and validated against measurements of LV mechanics and coronary perfusion, the model is applied to investigate changes in the transmural distribution of passive coronary perfusion, myocardial work density, and their ratio in response to changes in LV contractility, preload, afterload, wall thickness, and cavity volume. The model predicts the following: (1) Total passive coronary flow varies from a minimum value at the endocardium to a maximum value at the epicardium transmurally that is consistent with the transmural distribution of IMP; (2) Total passive coronary flow at different transmural locations is increased with an increase in either contractility, afterload, or preload of the LV, whereas is reduced with an increase in wall thickness or cavity volume; (3) Myocardial work density at different transmural locations is increased transmurally with an increase in either contractility, afterload, preload or cavity volume of the LV, but is reduced with an increase in wall thickness; (4) Myocardial work density-perfusion mismatch ratio at different transmural locations is increased with an increase in contractility, preload, wall thickness or cavity volume of the LV, and the ratio is higher at the endocardium than the epicardium. These results suggest that an increase in either contractility, preload, wall thickness, or cavity volume of the LV can increase the vulnerability of the subendocardial region to ischemia.Lei FanRavi NamaniJenny S. ChoyGhassan S. KassabLik Chuan LeeFrontiers Media S.A.articlecoronary flowcardiac workcardiac mechanicsmyocardial work density-perfusion mismatchcomputational modelingPhysiologyQP1-981ENFrontiers in Physiology, Vol 12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
coronary flow cardiac work cardiac mechanics myocardial work density-perfusion mismatch computational modeling Physiology QP1-981 |
spellingShingle |
coronary flow cardiac work cardiac mechanics myocardial work density-perfusion mismatch computational modeling Physiology QP1-981 Lei Fan Ravi Namani Jenny S. Choy Ghassan S. Kassab Lik Chuan Lee Transmural Distribution of Coronary Perfusion and Myocardial Work Density Due to Alterations in Ventricular Loading, Geometry and Contractility |
description |
Myocardial supply changes to accommodate the variation of myocardial demand across the heart wall to maintain normal cardiac function. A computational framework that couples the systemic circulation of a left ventricular (LV) finite element model and coronary perfusion in a closed loop is developed to investigate the transmural distribution of the myocardial demand (work density) and supply (perfusion) ratio. Calibrated and validated against measurements of LV mechanics and coronary perfusion, the model is applied to investigate changes in the transmural distribution of passive coronary perfusion, myocardial work density, and their ratio in response to changes in LV contractility, preload, afterload, wall thickness, and cavity volume. The model predicts the following: (1) Total passive coronary flow varies from a minimum value at the endocardium to a maximum value at the epicardium transmurally that is consistent with the transmural distribution of IMP; (2) Total passive coronary flow at different transmural locations is increased with an increase in either contractility, afterload, or preload of the LV, whereas is reduced with an increase in wall thickness or cavity volume; (3) Myocardial work density at different transmural locations is increased transmurally with an increase in either contractility, afterload, preload or cavity volume of the LV, but is reduced with an increase in wall thickness; (4) Myocardial work density-perfusion mismatch ratio at different transmural locations is increased with an increase in contractility, preload, wall thickness or cavity volume of the LV, and the ratio is higher at the endocardium than the epicardium. These results suggest that an increase in either contractility, preload, wall thickness, or cavity volume of the LV can increase the vulnerability of the subendocardial region to ischemia. |
format |
article |
author |
Lei Fan Ravi Namani Jenny S. Choy Ghassan S. Kassab Lik Chuan Lee |
author_facet |
Lei Fan Ravi Namani Jenny S. Choy Ghassan S. Kassab Lik Chuan Lee |
author_sort |
Lei Fan |
title |
Transmural Distribution of Coronary Perfusion and Myocardial Work Density Due to Alterations in Ventricular Loading, Geometry and Contractility |
title_short |
Transmural Distribution of Coronary Perfusion and Myocardial Work Density Due to Alterations in Ventricular Loading, Geometry and Contractility |
title_full |
Transmural Distribution of Coronary Perfusion and Myocardial Work Density Due to Alterations in Ventricular Loading, Geometry and Contractility |
title_fullStr |
Transmural Distribution of Coronary Perfusion and Myocardial Work Density Due to Alterations in Ventricular Loading, Geometry and Contractility |
title_full_unstemmed |
Transmural Distribution of Coronary Perfusion and Myocardial Work Density Due to Alterations in Ventricular Loading, Geometry and Contractility |
title_sort |
transmural distribution of coronary perfusion and myocardial work density due to alterations in ventricular loading, geometry and contractility |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/ef10d2fbc275459a9881a8075a4d259d |
work_keys_str_mv |
AT leifan transmuraldistributionofcoronaryperfusionandmyocardialworkdensityduetoalterationsinventricularloadinggeometryandcontractility AT ravinamani transmuraldistributionofcoronaryperfusionandmyocardialworkdensityduetoalterationsinventricularloadinggeometryandcontractility AT jennyschoy transmuraldistributionofcoronaryperfusionandmyocardialworkdensityduetoalterationsinventricularloadinggeometryandcontractility AT ghassanskassab transmuraldistributionofcoronaryperfusionandmyocardialworkdensityduetoalterationsinventricularloadinggeometryandcontractility AT likchuanlee transmuraldistributionofcoronaryperfusionandmyocardialworkdensityduetoalterationsinventricularloadinggeometryandcontractility |
_version_ |
1718406358410199040 |