Interpretable deep learning for the remote characterisation of ambulation in multiple sclerosis using smartphones
Abstract The emergence of digital technologies such as smartphones in healthcare applications have demonstrated the possibility of developing rich, continuous, and objective measures of multiple sclerosis (MS) disability that can be administered remotely and out-of-clinic. Deep Convolutional Neural...
Guardado en:
Autores principales: | Andrew P. Creagh, Florian Lipsmeier, Michael Lindemann, Maarten De Vos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ef240cad88a843779cae0ef61ba5cb57 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine Learning-Based Classification of Dependence in Ambulation in Stroke Patients Using Smartphone Video Data
por: Jong Taek Lee, et al.
Publicado: (2021) -
Smartphone-based symbol-digit modalities test reliably captures brain damage in multiple sclerosis
por: Linh Pham, et al.
Publicado: (2021) -
Characterisation of Temporal Patterns in Step Count Behaviour from Smartphone App Data: An Unsupervised Machine Learning Approach
por: Francesca Pontin, et al.
Publicado: (2021) -
Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep learning from clinical MRI.
por: Sibaji Gaj, et al.
Publicado: (2021) -
Give way to the ambulance; What we all need to do to facilitate ambulance in traffic?
por: Saba Tariq, et al.
Publicado: (2021)