Common workflows for computing material properties using different quantum engines

Abstract The prediction of material properties based on density-functional theory has become routinely common, thanks, in part, to the steady increase in the number and robustness of available simulation packages. This plurality of codes and methods is both a boon and a burden. While providing great...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sebastiaan P. Huber, Emanuele Bosoni, Marnik Bercx, Jens Bröder, Augustin Degomme, Vladimir Dikan, Kristjan Eimre, Espen Flage-Larsen, Alberto Garcia, Luigi Genovese, Dominik Gresch, Conrad Johnston, Guido Petretto, Samuel Poncé, Gian-Marco Rignanese, Christopher J. Sewell, Berend Smit, Vasily Tseplyaev, Martin Uhrin, Daniel Wortmann, Aliaksandr V. Yakutovich, Austin Zadoks, Pezhman Zarabadi-Poor, Bonan Zhu, Nicola Marzari, Giovanni Pizzi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/ef56a83500024ae0acb300450c076df1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ef56a83500024ae0acb300450c076df1
record_format dspace
spelling oai:doaj.org-article:ef56a83500024ae0acb300450c076df12021-12-02T18:51:46ZCommon workflows for computing material properties using different quantum engines10.1038/s41524-021-00594-62057-3960https://doaj.org/article/ef56a83500024ae0acb300450c076df12021-08-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00594-6https://doaj.org/toc/2057-3960Abstract The prediction of material properties based on density-functional theory has become routinely common, thanks, in part, to the steady increase in the number and robustness of available simulation packages. This plurality of codes and methods is both a boon and a burden. While providing great opportunities for cross-verification, these packages adopt different methods, algorithms, and paradigms, making it challenging to choose, master, and efficiently use them. We demonstrate how developing common interfaces for workflows that automatically compute material properties greatly simplifies interoperability and cross-verification. We introduce design rules for reusable, code-agnostic, workflow interfaces to compute well-defined material properties, which we implement for eleven quantum engines and use to compute various material properties. Each implementation encodes carefully selected simulation parameters and workflow logic, making the implementer’s expertise of the quantum engine directly available to non-experts. All workflows are made available as open-source and full reproducibility of the workflows is guaranteed through the use of the AiiDA infrastructure.Sebastiaan P. HuberEmanuele BosoniMarnik BercxJens BröderAugustin DegommeVladimir DikanKristjan EimreEspen Flage-LarsenAlberto GarciaLuigi GenoveseDominik GreschConrad JohnstonGuido PetrettoSamuel PoncéGian-Marco RignaneseChristopher J. SewellBerend SmitVasily TseplyaevMartin UhrinDaniel WortmannAliaksandr V. YakutovichAustin ZadoksPezhman Zarabadi-PoorBonan ZhuNicola MarzariGiovanni PizziNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
Sebastiaan P. Huber
Emanuele Bosoni
Marnik Bercx
Jens Bröder
Augustin Degomme
Vladimir Dikan
Kristjan Eimre
Espen Flage-Larsen
Alberto Garcia
Luigi Genovese
Dominik Gresch
Conrad Johnston
Guido Petretto
Samuel Poncé
Gian-Marco Rignanese
Christopher J. Sewell
Berend Smit
Vasily Tseplyaev
Martin Uhrin
Daniel Wortmann
Aliaksandr V. Yakutovich
Austin Zadoks
Pezhman Zarabadi-Poor
Bonan Zhu
Nicola Marzari
Giovanni Pizzi
Common workflows for computing material properties using different quantum engines
description Abstract The prediction of material properties based on density-functional theory has become routinely common, thanks, in part, to the steady increase in the number and robustness of available simulation packages. This plurality of codes and methods is both a boon and a burden. While providing great opportunities for cross-verification, these packages adopt different methods, algorithms, and paradigms, making it challenging to choose, master, and efficiently use them. We demonstrate how developing common interfaces for workflows that automatically compute material properties greatly simplifies interoperability and cross-verification. We introduce design rules for reusable, code-agnostic, workflow interfaces to compute well-defined material properties, which we implement for eleven quantum engines and use to compute various material properties. Each implementation encodes carefully selected simulation parameters and workflow logic, making the implementer’s expertise of the quantum engine directly available to non-experts. All workflows are made available as open-source and full reproducibility of the workflows is guaranteed through the use of the AiiDA infrastructure.
format article
author Sebastiaan P. Huber
Emanuele Bosoni
Marnik Bercx
Jens Bröder
Augustin Degomme
Vladimir Dikan
Kristjan Eimre
Espen Flage-Larsen
Alberto Garcia
Luigi Genovese
Dominik Gresch
Conrad Johnston
Guido Petretto
Samuel Poncé
Gian-Marco Rignanese
Christopher J. Sewell
Berend Smit
Vasily Tseplyaev
Martin Uhrin
Daniel Wortmann
Aliaksandr V. Yakutovich
Austin Zadoks
Pezhman Zarabadi-Poor
Bonan Zhu
Nicola Marzari
Giovanni Pizzi
author_facet Sebastiaan P. Huber
Emanuele Bosoni
Marnik Bercx
Jens Bröder
Augustin Degomme
Vladimir Dikan
Kristjan Eimre
Espen Flage-Larsen
Alberto Garcia
Luigi Genovese
Dominik Gresch
Conrad Johnston
Guido Petretto
Samuel Poncé
Gian-Marco Rignanese
Christopher J. Sewell
Berend Smit
Vasily Tseplyaev
Martin Uhrin
Daniel Wortmann
Aliaksandr V. Yakutovich
Austin Zadoks
Pezhman Zarabadi-Poor
Bonan Zhu
Nicola Marzari
Giovanni Pizzi
author_sort Sebastiaan P. Huber
title Common workflows for computing material properties using different quantum engines
title_short Common workflows for computing material properties using different quantum engines
title_full Common workflows for computing material properties using different quantum engines
title_fullStr Common workflows for computing material properties using different quantum engines
title_full_unstemmed Common workflows for computing material properties using different quantum engines
title_sort common workflows for computing material properties using different quantum engines
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ef56a83500024ae0acb300450c076df1
work_keys_str_mv AT sebastiaanphuber commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT emanuelebosoni commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT marnikbercx commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT jensbroder commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT augustindegomme commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT vladimirdikan commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT kristjaneimre commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT espenflagelarsen commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT albertogarcia commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT luigigenovese commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT dominikgresch commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT conradjohnston commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT guidopetretto commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT samuelponce commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT gianmarcorignanese commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT christopherjsewell commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT berendsmit commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT vasilytseplyaev commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT martinuhrin commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT danielwortmann commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT aliaksandrvyakutovich commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT austinzadoks commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT pezhmanzarabadipoor commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT bonanzhu commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT nicolamarzari commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
AT giovannipizzi commonworkflowsforcomputingmaterialpropertiesusingdifferentquantumengines
_version_ 1718377421022953472