Common workflows for computing material properties using different quantum engines
Abstract The prediction of material properties based on density-functional theory has become routinely common, thanks, in part, to the steady increase in the number and robustness of available simulation packages. This plurality of codes and methods is both a boon and a burden. While providing great...
Guardado en:
Autores principales: | Sebastiaan P. Huber, Emanuele Bosoni, Marnik Bercx, Jens Bröder, Augustin Degomme, Vladimir Dikan, Kristjan Eimre, Espen Flage-Larsen, Alberto Garcia, Luigi Genovese, Dominik Gresch, Conrad Johnston, Guido Petretto, Samuel Poncé, Gian-Marco Rignanese, Christopher J. Sewell, Berend Smit, Vasily Tseplyaev, Martin Uhrin, Daniel Wortmann, Aliaksandr V. Yakutovich, Austin Zadoks, Pezhman Zarabadi-Poor, Bonan Zhu, Nicola Marzari, Giovanni Pizzi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ef56a83500024ae0acb300450c076df1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Materials property prediction for limited datasets enabled by feature selection and joint learning with MODNet
por: Pierre-Paul De Breuck, et al.
Publicado: (2021) -
A study of real-world micrograph data quality and machine learning model robustness
por: Xiaoting Zhong, et al.
Publicado: (2021) -
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
por: Svetoslav Nikolov, et al.
Publicado: (2021) -
Exploiting the quantum mechanically derived force field for functional materials simulations
por: Alexey Odinokov, et al.
Publicado: (2021) -
Symmetry-aware recursive image similarity exploration for materials microscopy
por: Tri N. M. Nguyen, et al.
Publicado: (2021)