Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities

ABSTRACT Wetland ecosystems are important reservoirs of biodiversity and significantly contribute to emissions of the greenhouse gases CO2, N2O, and CH4. High anthropogenic nitrogen (N) inputs from agriculture and fossil fuel combustion have been recognized as a severe threat to biodiversity and eco...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Eric R. Hester, Sarah F. Harpenslager, Josepha M. H. van Diggelen, Leon L. Lamers, Mike S. M. Jetten, Claudia Lüke, Sebastian Lücker, Cornelia U. Welte
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://doaj.org/article/ef58dc802fd0446b843d1ef585148a1b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ef58dc802fd0446b843d1ef585148a1b
record_format dspace
spelling oai:doaj.org-article:ef58dc802fd0446b843d1ef585148a1b2021-12-02T18:15:43ZLinking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities10.1128/mSystems.00214-172379-5077https://doaj.org/article/ef58dc802fd0446b843d1ef585148a1b2018-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00214-17https://doaj.org/toc/2379-5077ABSTRACT Wetland ecosystems are important reservoirs of biodiversity and significantly contribute to emissions of the greenhouse gases CO2, N2O, and CH4. High anthropogenic nitrogen (N) inputs from agriculture and fossil fuel combustion have been recognized as a severe threat to biodiversity and ecosystem functioning, such as control of greenhouse gas emissions. Therefore, it is important to understand how increased N input into pristine wetlands affects the composition and activity of microorganisms, especially in interaction with dominant wetland plants. In a series of incubations analyzed over 90 days, we disentangled the effects of N fertilization on the microbial community in bulk soil and the rhizosphere of Juncus acutiflorus, a common and abundant graminoid wetland plant. We observed an increase in greenhouse gas emissions when N is increased in incubations with J. acutiflorus, changing the system from a greenhouse gas sink to a source. Using 16S rRNA gene amplicon sequencing, we determined that the bacterial orders Opitutales, subgroup 6 Acidobacteria, and Sphingobacteriales significantly responded to high N availability. Based on metagenomic data, we hypothesize that these groups are contributing to the increased greenhouse gas emissions. These results indicated that increased N input leads to shifts in microbial activity within the rhizosphere, altering N cycling dynamics. Our study provides a framework for connecting environmental conditions of wetland bulk and rhizosphere soil to the structure and metabolic output of microbial communities. IMPORTANCE Microorganisms living within the rhizospheres of wetland plants significantly contribute to greenhouse gas emissions. Understanding how microbes produce these gases under conditions that have been imposed by human activities (i.e., nitrogen pollution) is important to the development of future management strategies. Our results illustrate that within the rhizosphere of the wetland plant Juncus acutiflorus, physiological differences associated with nitrogen availability can influence microbial activity linked to greenhouse gas production. By pairing taxonomic information and environmental conditions like nitrogen availability with functional outputs of a system such as greenhouse gas fluxes, we present a framework to link certain taxa to both nitrogen load and greenhouse gas production. We view this type of combined information as essential in moving forward in our understanding of complex systems such as rhizosphere microbial communities.Eric R. HesterSarah F. HarpenslagerJosepha M. H. van DiggelenLeon L. LamersMike S. M. JettenClaudia LükeSebastian LückerCornelia U. WelteAmerican Society for MicrobiologyarticleAcidobacteriaJuncus acutiflorusOpitutalesSphingobacterialesgreenhouse gasmetagenomicsMicrobiologyQR1-502ENmSystems, Vol 3, Iss 1 (2018)
institution DOAJ
collection DOAJ
language EN
topic Acidobacteria
Juncus acutiflorus
Opitutales
Sphingobacteriales
greenhouse gas
metagenomics
Microbiology
QR1-502
spellingShingle Acidobacteria
Juncus acutiflorus
Opitutales
Sphingobacteriales
greenhouse gas
metagenomics
Microbiology
QR1-502
Eric R. Hester
Sarah F. Harpenslager
Josepha M. H. van Diggelen
Leon L. Lamers
Mike S. M. Jetten
Claudia Lüke
Sebastian Lücker
Cornelia U. Welte
Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities
description ABSTRACT Wetland ecosystems are important reservoirs of biodiversity and significantly contribute to emissions of the greenhouse gases CO2, N2O, and CH4. High anthropogenic nitrogen (N) inputs from agriculture and fossil fuel combustion have been recognized as a severe threat to biodiversity and ecosystem functioning, such as control of greenhouse gas emissions. Therefore, it is important to understand how increased N input into pristine wetlands affects the composition and activity of microorganisms, especially in interaction with dominant wetland plants. In a series of incubations analyzed over 90 days, we disentangled the effects of N fertilization on the microbial community in bulk soil and the rhizosphere of Juncus acutiflorus, a common and abundant graminoid wetland plant. We observed an increase in greenhouse gas emissions when N is increased in incubations with J. acutiflorus, changing the system from a greenhouse gas sink to a source. Using 16S rRNA gene amplicon sequencing, we determined that the bacterial orders Opitutales, subgroup 6 Acidobacteria, and Sphingobacteriales significantly responded to high N availability. Based on metagenomic data, we hypothesize that these groups are contributing to the increased greenhouse gas emissions. These results indicated that increased N input leads to shifts in microbial activity within the rhizosphere, altering N cycling dynamics. Our study provides a framework for connecting environmental conditions of wetland bulk and rhizosphere soil to the structure and metabolic output of microbial communities. IMPORTANCE Microorganisms living within the rhizospheres of wetland plants significantly contribute to greenhouse gas emissions. Understanding how microbes produce these gases under conditions that have been imposed by human activities (i.e., nitrogen pollution) is important to the development of future management strategies. Our results illustrate that within the rhizosphere of the wetland plant Juncus acutiflorus, physiological differences associated with nitrogen availability can influence microbial activity linked to greenhouse gas production. By pairing taxonomic information and environmental conditions like nitrogen availability with functional outputs of a system such as greenhouse gas fluxes, we present a framework to link certain taxa to both nitrogen load and greenhouse gas production. We view this type of combined information as essential in moving forward in our understanding of complex systems such as rhizosphere microbial communities.
format article
author Eric R. Hester
Sarah F. Harpenslager
Josepha M. H. van Diggelen
Leon L. Lamers
Mike S. M. Jetten
Claudia Lüke
Sebastian Lücker
Cornelia U. Welte
author_facet Eric R. Hester
Sarah F. Harpenslager
Josepha M. H. van Diggelen
Leon L. Lamers
Mike S. M. Jetten
Claudia Lüke
Sebastian Lücker
Cornelia U. Welte
author_sort Eric R. Hester
title Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities
title_short Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities
title_full Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities
title_fullStr Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities
title_full_unstemmed Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities
title_sort linking nitrogen load to the structure and function of wetland soil and rhizosphere microbial communities
publisher American Society for Microbiology
publishDate 2018
url https://doaj.org/article/ef58dc802fd0446b843d1ef585148a1b
work_keys_str_mv AT ericrhester linkingnitrogenloadtothestructureandfunctionofwetlandsoilandrhizospheremicrobialcommunities
AT sarahfharpenslager linkingnitrogenloadtothestructureandfunctionofwetlandsoilandrhizospheremicrobialcommunities
AT josephamhvandiggelen linkingnitrogenloadtothestructureandfunctionofwetlandsoilandrhizospheremicrobialcommunities
AT leonllamers linkingnitrogenloadtothestructureandfunctionofwetlandsoilandrhizospheremicrobialcommunities
AT mikesmjetten linkingnitrogenloadtothestructureandfunctionofwetlandsoilandrhizospheremicrobialcommunities
AT claudialuke linkingnitrogenloadtothestructureandfunctionofwetlandsoilandrhizospheremicrobialcommunities
AT sebastianlucker linkingnitrogenloadtothestructureandfunctionofwetlandsoilandrhizospheremicrobialcommunities
AT corneliauwelte linkingnitrogenloadtothestructureandfunctionofwetlandsoilandrhizospheremicrobialcommunities
_version_ 1718378368270860288