Permanent excavation interaction and adjacent building under earthquake (Case study: Entrance ramp of the city train and hamyari-shahrdari building)

Deep excavation have a direct effect on stresses and strains of surrounding soil, and it leads to the change in static and dynamic response of adjacent structures of the excavation. In this study the effects of urban rail ramp permanent excavation on Hamyari response, has been investigated. Consider...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jahangir Khazaei, Afshin Ghobadian
Formato: article
Lenguaje:FA
Publicado: Iranian Society of Structrual Engineering (ISSE) 2019
Materias:
Acceso en línea:https://doaj.org/article/ef59857377864877a9e3abd4539610b3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ef59857377864877a9e3abd4539610b3
record_format dspace
spelling oai:doaj.org-article:ef59857377864877a9e3abd4539610b32021-11-08T15:52:22ZPermanent excavation interaction and adjacent building under earthquake (Case study: Entrance ramp of the city train and hamyari-shahrdari building)2476-39772538-261610.22065/jsce.2018.104878.1378https://doaj.org/article/ef59857377864877a9e3abd4539610b32019-11-01T00:00:00Zhttps://www.jsce.ir/article_61072_330bda8f4dc79e326b6a7add9e6de765.pdfhttps://doaj.org/toc/2476-3977https://doaj.org/toc/2538-2616Deep excavation have a direct effect on stresses and strains of surrounding soil, and it leads to the change in static and dynamic response of adjacent structures of the excavation. In this study the effects of urban rail ramp permanent excavation on Hamyari response, has been investigated. Consideration of soil-structure-groove interaction has a great effect on the structure response, including increased range of internal motion of foundation and floors, reducing the base shear, and increasing the natural period of the structure. The three-dimensional study has considered a nonlinear behaviour for soil and steel materials and also, semi-infinite elements have been used for viscose boundaries. The use of semi-infinite boundaries has shown a desirable performance in seismic analysis of soil environments. Placement of the building near the entrance ramp of Kermanshah metro and consideration of soil-structure interaction near the excavation, lead to the 8.98% increasing in the first period of the structure, decreasing 19.37% base shear of the Structure against the rest rigid condition, and also increasing the lateral displacement of floors, especially higher floors, and this increment in the roof floor compared to the rigid base and soil-structure interaction are 89.89% and 14.25%, respectively. Also, consideration of soil-structure interaction adjust excavation for building compared to the case with soil-structure interaction and without the excavation effect, leads to the 1.09% increasing in the first period of the structure and 10.27% decreasing in base shear, and also increasing of acceleration response spectrum.Jahangir KhazaeiAfshin GhobadianIranian Society of Structrual Engineering (ISSE)articlesoil-structure interactiondeep excavationdynamic responsebase shearperiod of first modestructure adjust excavationBridge engineeringTG1-470Building constructionTH1-9745FAJournal of Structural and Construction Engineering, Vol 6, Iss شماره 3, Pp 57-70 (2019)
institution DOAJ
collection DOAJ
language FA
topic soil-structure interaction
deep excavation
dynamic response
base shear
period of first mode
structure adjust excavation
Bridge engineering
TG1-470
Building construction
TH1-9745
spellingShingle soil-structure interaction
deep excavation
dynamic response
base shear
period of first mode
structure adjust excavation
Bridge engineering
TG1-470
Building construction
TH1-9745
Jahangir Khazaei
Afshin Ghobadian
Permanent excavation interaction and adjacent building under earthquake (Case study: Entrance ramp of the city train and hamyari-shahrdari building)
description Deep excavation have a direct effect on stresses and strains of surrounding soil, and it leads to the change in static and dynamic response of adjacent structures of the excavation. In this study the effects of urban rail ramp permanent excavation on Hamyari response, has been investigated. Consideration of soil-structure-groove interaction has a great effect on the structure response, including increased range of internal motion of foundation and floors, reducing the base shear, and increasing the natural period of the structure. The three-dimensional study has considered a nonlinear behaviour for soil and steel materials and also, semi-infinite elements have been used for viscose boundaries. The use of semi-infinite boundaries has shown a desirable performance in seismic analysis of soil environments. Placement of the building near the entrance ramp of Kermanshah metro and consideration of soil-structure interaction near the excavation, lead to the 8.98% increasing in the first period of the structure, decreasing 19.37% base shear of the Structure against the rest rigid condition, and also increasing the lateral displacement of floors, especially higher floors, and this increment in the roof floor compared to the rigid base and soil-structure interaction are 89.89% and 14.25%, respectively. Also, consideration of soil-structure interaction adjust excavation for building compared to the case with soil-structure interaction and without the excavation effect, leads to the 1.09% increasing in the first period of the structure and 10.27% decreasing in base shear, and also increasing of acceleration response spectrum.
format article
author Jahangir Khazaei
Afshin Ghobadian
author_facet Jahangir Khazaei
Afshin Ghobadian
author_sort Jahangir Khazaei
title Permanent excavation interaction and adjacent building under earthquake (Case study: Entrance ramp of the city train and hamyari-shahrdari building)
title_short Permanent excavation interaction and adjacent building under earthquake (Case study: Entrance ramp of the city train and hamyari-shahrdari building)
title_full Permanent excavation interaction and adjacent building under earthquake (Case study: Entrance ramp of the city train and hamyari-shahrdari building)
title_fullStr Permanent excavation interaction and adjacent building under earthquake (Case study: Entrance ramp of the city train and hamyari-shahrdari building)
title_full_unstemmed Permanent excavation interaction and adjacent building under earthquake (Case study: Entrance ramp of the city train and hamyari-shahrdari building)
title_sort permanent excavation interaction and adjacent building under earthquake (case study: entrance ramp of the city train and hamyari-shahrdari building)
publisher Iranian Society of Structrual Engineering (ISSE)
publishDate 2019
url https://doaj.org/article/ef59857377864877a9e3abd4539610b3
work_keys_str_mv AT jahangirkhazaei permanentexcavationinteractionandadjacentbuildingunderearthquakecasestudyentrancerampofthecitytrainandhamyarishahrdaribuilding
AT afshinghobadian permanentexcavationinteractionandadjacentbuildingunderearthquakecasestudyentrancerampofthecitytrainandhamyarishahrdaribuilding
_version_ 1718441712464953344