Stress analysis and fracture simulation of aluminosilicate glass plates under Ring-On-Ring loading
Ring-On-Ring (ROR) tests have been widely applied to evaluate the biaxial flexural strength of brittle materials. Properly designed geometry of specimens and loading configurations are essential for accurate test results. In this paper, the stress distribution of round glass plates subjected to load...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ef649e9ed7064cf7b209b0e76001fb77 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ef649e9ed7064cf7b209b0e76001fb77 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ef649e9ed7064cf7b209b0e76001fb772021-12-04T04:36:00ZStress analysis and fracture simulation of aluminosilicate glass plates under Ring-On-Ring loading2666-359710.1016/j.finmec.2021.100047https://doaj.org/article/ef649e9ed7064cf7b209b0e76001fb772021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S266635972100038Xhttps://doaj.org/toc/2666-3597Ring-On-Ring (ROR) tests have been widely applied to evaluate the biaxial flexural strength of brittle materials. Properly designed geometry of specimens and loading configurations are essential for accurate test results. In this paper, the stress distribution of round glass plates subjected to loading between concentric rings was investigated via finite element analysis. In particular, the effects of the ratio of the ring diameter, overhang and thickness of plates were studied and discussed. ROR tests on aluminosilicate glass were then conducted together with numerical simulations based on the smeared fixed crack method. The out-of-plane deformation of glass plates can be reproduced well by the numerical model. In order to mimic the observed fracture modes, numerical models with different mesh geometries were utilized and compared. Unstructured quadrilateral mesh and triangular mesh types were proven to be efficient in reproducing the fracture and failure morphology of glass specimens.Zhen WangAndrea ManesElsevierarticleAluminosilicate glassROR testStress distributionSmear fixed crack methodFracture modeMechanics of engineering. Applied mechanicsTA349-359TechnologyTENForces in Mechanics, Vol 5, Iss , Pp 100047- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Aluminosilicate glass ROR test Stress distribution Smear fixed crack method Fracture mode Mechanics of engineering. Applied mechanics TA349-359 Technology T |
spellingShingle |
Aluminosilicate glass ROR test Stress distribution Smear fixed crack method Fracture mode Mechanics of engineering. Applied mechanics TA349-359 Technology T Zhen Wang Andrea Manes Stress analysis and fracture simulation of aluminosilicate glass plates under Ring-On-Ring loading |
description |
Ring-On-Ring (ROR) tests have been widely applied to evaluate the biaxial flexural strength of brittle materials. Properly designed geometry of specimens and loading configurations are essential for accurate test results. In this paper, the stress distribution of round glass plates subjected to loading between concentric rings was investigated via finite element analysis. In particular, the effects of the ratio of the ring diameter, overhang and thickness of plates were studied and discussed. ROR tests on aluminosilicate glass were then conducted together with numerical simulations based on the smeared fixed crack method. The out-of-plane deformation of glass plates can be reproduced well by the numerical model. In order to mimic the observed fracture modes, numerical models with different mesh geometries were utilized and compared. Unstructured quadrilateral mesh and triangular mesh types were proven to be efficient in reproducing the fracture and failure morphology of glass specimens. |
format |
article |
author |
Zhen Wang Andrea Manes |
author_facet |
Zhen Wang Andrea Manes |
author_sort |
Zhen Wang |
title |
Stress analysis and fracture simulation of aluminosilicate glass plates under Ring-On-Ring loading |
title_short |
Stress analysis and fracture simulation of aluminosilicate glass plates under Ring-On-Ring loading |
title_full |
Stress analysis and fracture simulation of aluminosilicate glass plates under Ring-On-Ring loading |
title_fullStr |
Stress analysis and fracture simulation of aluminosilicate glass plates under Ring-On-Ring loading |
title_full_unstemmed |
Stress analysis and fracture simulation of aluminosilicate glass plates under Ring-On-Ring loading |
title_sort |
stress analysis and fracture simulation of aluminosilicate glass plates under ring-on-ring loading |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/ef649e9ed7064cf7b209b0e76001fb77 |
work_keys_str_mv |
AT zhenwang stressanalysisandfracturesimulationofaluminosilicateglassplatesunderringonringloading AT andreamanes stressanalysisandfracturesimulationofaluminosilicateglassplatesunderringonringloading |
_version_ |
1718372946944196608 |