Human Action Recognition of Spatiotemporal Parameters for Skeleton Sequences Using MTLN Feature Learning Framework
Human action recognition (HAR) by skeleton data is considered a potential research aspect in computer vision. Three-dimensional HAR with skeleton data has been used commonly because of its effective and efficient results. Several models have been developed for learning spatiotemporal parameters from...
Enregistré dans:
Auteurs principaux: | Faisal Mehmood, Enqing Chen, Muhammad Azeem Akbar, Abeer Abdulaziz Alsanad |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ef9865d76f654905b711d50b6b7c2dd9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A comparison of convolutional neural networks for Kazakh sign language recognition
par: Chingiz Kenshimov, et autres
Publié: (2021) -
Hierarchical Spatiotemporal Electroencephalogram Feature Learning and Emotion Recognition With Attention-Based Antagonism Neural Network
par: Pengwei Zhang, et autres
Publié: (2021) -
Industry 4.0-Oriented Deep Learning Models for Human Activity Recognition
par: Saeed Mohsen, et autres
Publié: (2021) -
The evaluation of synthetic datasets on training AlexNet for surgical tool detection
par: Ding N., et autres
Publié: (2020) -
Sequentially Delineation of Rooftops with Holes from VHR Aerial Images Using a Convolutional Recurrent Neural Network
par: Wei Huang, et autres
Publié: (2021)