Single-impurity-induced Dicke quantum phase transition in a cavity-Bose-Einstein condensate
Abstract We present a new generalized Dicke model, an impurity-doped Dicke model (IDDM), by the use of an impurity-doped cavity-Bose-Einstein condensate (BEC). It is shown that the impurity atom can induce Dicke quantum phase transition (QPT) from the normal phase to superradiant phase at a critic v...
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ef9a3fccd0784c2b87df08a831a031a4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Abstract We present a new generalized Dicke model, an impurity-doped Dicke model (IDDM), by the use of an impurity-doped cavity-Bose-Einstein condensate (BEC). It is shown that the impurity atom can induce Dicke quantum phase transition (QPT) from the normal phase to superradiant phase at a critic value of the impurity population. It is found that the impurity-induced Dicke QPT can happen in an arbitrary field-atom coupling regime while the Dicke QPT in the standard Dicke model occurs only in the strong coupling regime of the cavity field and atoms. This opens the possibility to realize the control of quantum properties of a macroscopic-quantum system (BEC) by using a microscopic quantum system (a single impurity atom). |
---|