Non-Isothermal Vortex Flow in the T-Junction Pipe

The numerical simulation approach of heat carrier mixing regimes in the T-junction shows that the RANS approach is beneficial for a qualitative flow analysis to obtain relatively agreed averaged velocity and temperature. Moreover, traditionally, the RANS approach only predicts the averaged temperatu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tatyana A. Baranova, Yulia V. Zhukova, Andrei D. Chorny, Artem Skrypnik, Igor A. Popov
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/efb3d3f7cefd460e88dff1a3f81017df
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:efb3d3f7cefd460e88dff1a3f81017df
record_format dspace
spelling oai:doaj.org-article:efb3d3f7cefd460e88dff1a3f81017df2021-11-11T15:49:10ZNon-Isothermal Vortex Flow in the T-Junction Pipe10.3390/en142170021996-1073https://doaj.org/article/efb3d3f7cefd460e88dff1a3f81017df2021-10-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/21/7002https://doaj.org/toc/1996-1073The numerical simulation approach of heat carrier mixing regimes in the T-junction shows that the RANS approach is beneficial for a qualitative flow analysis to obtain relatively agreed averaged velocity and temperature. Moreover, traditionally, the RANS approach only predicts the averaged temperature distribution. This mathematical model did not consider the temperature fluctuation variations important for the thermal fatigue task. It should also be emphasized that unlike the LES approach, the steady RANS approach cannot express a local flow structure in intense mixing zones. Nevertheless, apparently the adopted RANS approach should be used for assessing the quality of computational meshes, boundary conditions with the purpose to take LES for further numerical simulation.Tatyana A. BaranovaYulia V. ZhukovaAndrei D. ChornyArtem SkrypnikIgor A. PopovMDPI AGarticlevortex flowT-junctionnumerical simulationthermal fatigueTechnologyTENEnergies, Vol 14, Iss 7002, p 7002 (2021)
institution DOAJ
collection DOAJ
language EN
topic vortex flow
T-junction
numerical simulation
thermal fatigue
Technology
T
spellingShingle vortex flow
T-junction
numerical simulation
thermal fatigue
Technology
T
Tatyana A. Baranova
Yulia V. Zhukova
Andrei D. Chorny
Artem Skrypnik
Igor A. Popov
Non-Isothermal Vortex Flow in the T-Junction Pipe
description The numerical simulation approach of heat carrier mixing regimes in the T-junction shows that the RANS approach is beneficial for a qualitative flow analysis to obtain relatively agreed averaged velocity and temperature. Moreover, traditionally, the RANS approach only predicts the averaged temperature distribution. This mathematical model did not consider the temperature fluctuation variations important for the thermal fatigue task. It should also be emphasized that unlike the LES approach, the steady RANS approach cannot express a local flow structure in intense mixing zones. Nevertheless, apparently the adopted RANS approach should be used for assessing the quality of computational meshes, boundary conditions with the purpose to take LES for further numerical simulation.
format article
author Tatyana A. Baranova
Yulia V. Zhukova
Andrei D. Chorny
Artem Skrypnik
Igor A. Popov
author_facet Tatyana A. Baranova
Yulia V. Zhukova
Andrei D. Chorny
Artem Skrypnik
Igor A. Popov
author_sort Tatyana A. Baranova
title Non-Isothermal Vortex Flow in the T-Junction Pipe
title_short Non-Isothermal Vortex Flow in the T-Junction Pipe
title_full Non-Isothermal Vortex Flow in the T-Junction Pipe
title_fullStr Non-Isothermal Vortex Flow in the T-Junction Pipe
title_full_unstemmed Non-Isothermal Vortex Flow in the T-Junction Pipe
title_sort non-isothermal vortex flow in the t-junction pipe
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/efb3d3f7cefd460e88dff1a3f81017df
work_keys_str_mv AT tatyanaabaranova nonisothermalvortexflowinthetjunctionpipe
AT yuliavzhukova nonisothermalvortexflowinthetjunctionpipe
AT andreidchorny nonisothermalvortexflowinthetjunctionpipe
AT artemskrypnik nonisothermalvortexflowinthetjunctionpipe
AT igorapopov nonisothermalvortexflowinthetjunctionpipe
_version_ 1718433798987710464