Support vector regression-based QSAR models for prediction of antioxidant activity of phenolic compounds

Abstract The Support vector regression (SVR) was used to investigate quantitative structure–activity relationships (QSAR) of 75 phenolic compounds with Trolox-equivalent antioxidant capacity (TEAC). Geometric structures were optimized at the EF level of the MOPAC software program. Using Pearson corr...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Ying Shi
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/efc2fc9d3bf54a7fb4f364a855a3796a
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!