Spin distillation cooling of ultracold Bose gases
Abstract We study the spin distillation of spinor gases of bosonic atoms and find two different mechanisms in $${}^{52}$$ 52 Cr and $$^{23}$$ 23 Na atoms, both of which can cool effectively. The first mechanism involves dipolar scattering into initially unoccupied spin states and cools only above a...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/efe882981e784f9e9dabdc65f869905c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:efe882981e784f9e9dabdc65f869905c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:efe882981e784f9e9dabdc65f869905c2021-12-02T16:31:07ZSpin distillation cooling of ultracold Bose gases10.1038/s41598-021-85298-z2045-2322https://doaj.org/article/efe882981e784f9e9dabdc65f869905c2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85298-zhttps://doaj.org/toc/2045-2322Abstract We study the spin distillation of spinor gases of bosonic atoms and find two different mechanisms in $${}^{52}$$ 52 Cr and $$^{23}$$ 23 Na atoms, both of which can cool effectively. The first mechanism involves dipolar scattering into initially unoccupied spin states and cools only above a threshold magnetic field. The second proceeds via equilibrium relaxation of the thermal cloud into empty spin states, reducing its proportion in the initial component. It cools only below a threshold magnetic field. The technique was initially demonstrated experimentally for a chromium dipolar gas (Naylor et al. in Phys Rev Lett 115:243002, 2015), whereas here we develop the concept further and provide an in-depth understanding of the required physics and limitations involved. Through numerical simulations, we reveal the mechanisms involved and demonstrate that the spin distillation cycle can be repeated several times, each time resulting in a significant additional reduction of the thermal atom fraction. Threshold values of magnetic field and predictions for the achievable temperature are also identified.Tomasz ŚwisłockiMariusz GajdaMirosław BrewczykPiotr DeuarNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Tomasz Świsłocki Mariusz Gajda Mirosław Brewczyk Piotr Deuar Spin distillation cooling of ultracold Bose gases |
description |
Abstract We study the spin distillation of spinor gases of bosonic atoms and find two different mechanisms in $${}^{52}$$ 52 Cr and $$^{23}$$ 23 Na atoms, both of which can cool effectively. The first mechanism involves dipolar scattering into initially unoccupied spin states and cools only above a threshold magnetic field. The second proceeds via equilibrium relaxation of the thermal cloud into empty spin states, reducing its proportion in the initial component. It cools only below a threshold magnetic field. The technique was initially demonstrated experimentally for a chromium dipolar gas (Naylor et al. in Phys Rev Lett 115:243002, 2015), whereas here we develop the concept further and provide an in-depth understanding of the required physics and limitations involved. Through numerical simulations, we reveal the mechanisms involved and demonstrate that the spin distillation cycle can be repeated several times, each time resulting in a significant additional reduction of the thermal atom fraction. Threshold values of magnetic field and predictions for the achievable temperature are also identified. |
format |
article |
author |
Tomasz Świsłocki Mariusz Gajda Mirosław Brewczyk Piotr Deuar |
author_facet |
Tomasz Świsłocki Mariusz Gajda Mirosław Brewczyk Piotr Deuar |
author_sort |
Tomasz Świsłocki |
title |
Spin distillation cooling of ultracold Bose gases |
title_short |
Spin distillation cooling of ultracold Bose gases |
title_full |
Spin distillation cooling of ultracold Bose gases |
title_fullStr |
Spin distillation cooling of ultracold Bose gases |
title_full_unstemmed |
Spin distillation cooling of ultracold Bose gases |
title_sort |
spin distillation cooling of ultracold bose gases |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/efe882981e784f9e9dabdc65f869905c |
work_keys_str_mv |
AT tomaszswisłocki spindistillationcoolingofultracoldbosegases AT mariuszgajda spindistillationcoolingofultracoldbosegases AT mirosławbrewczyk spindistillationcoolingofultracoldbosegases AT piotrdeuar spindistillationcoolingofultracoldbosegases |
_version_ |
1718383907840196608 |