Machine learning application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph
Abstract Triaging and prioritising patients for RT-PCR test had been essential in the management of COVID-19 in resource-scarce countries. In this study, we applied machine learning (ML) to the task of detection of SARS-CoV-2 infection using basic laboratory markers. We performed the statistical ana...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f01d34f4f45d4097bfbec59ffa2e34af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f01d34f4f45d4097bfbec59ffa2e34af |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f01d34f4f45d4097bfbec59ffa2e34af2021-12-02T15:23:08ZMachine learning application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph10.1038/s41598-021-93719-22045-2322https://doaj.org/article/f01d34f4f45d4097bfbec59ffa2e34af2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93719-2https://doaj.org/toc/2045-2322Abstract Triaging and prioritising patients for RT-PCR test had been essential in the management of COVID-19 in resource-scarce countries. In this study, we applied machine learning (ML) to the task of detection of SARS-CoV-2 infection using basic laboratory markers. We performed the statistical analysis and trained an ML model on a retrospective cohort of 5148 patients from 24 hospitals in Hong Kong to classify COVID-19 and other aetiology of pneumonia. We validated the model on three temporal validation sets from different waves of infection in Hong Kong. For predicting SARS-CoV-2 infection, the ML model achieved high AUCs and specificity but low sensitivity in all three validation sets (AUC: 89.9–95.8%; Sensitivity: 55.5–77.8%; Specificity: 91.5–98.3%). When used in adjunction with radiologist interpretations of chest radiographs, the sensitivity was over 90% while keeping moderate specificity. Our study showed that machine learning model based on readily available laboratory markers could achieve high accuracy in predicting SARS-CoV-2 infection.Richard DuEfstratios D. TsougenisJoshua W. K. HoJoyce K. Y. ChanKeith W. H. ChiuBenjamin X. H. FangMing Yen NgSiu-Ting LeungChristine S. Y. LoHo-Yuen F. WongHiu-Yin S. LamLong-Fung J. ChiuTiffany Y SoKa Tak WongYiu Chung I. WongKevin YuYiu-Cheong YeungThomas ChikJoanna W. K. PangAbraham Ka-chung WaiMichael D. KuoTina P. W. LamPek-Lan KhongNgai-Tseung CheungVarut VardhanabhutiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Richard Du Efstratios D. Tsougenis Joshua W. K. Ho Joyce K. Y. Chan Keith W. H. Chiu Benjamin X. H. Fang Ming Yen Ng Siu-Ting Leung Christine S. Y. Lo Ho-Yuen F. Wong Hiu-Yin S. Lam Long-Fung J. Chiu Tiffany Y So Ka Tak Wong Yiu Chung I. Wong Kevin Yu Yiu-Cheong Yeung Thomas Chik Joanna W. K. Pang Abraham Ka-chung Wai Michael D. Kuo Tina P. W. Lam Pek-Lan Khong Ngai-Tseung Cheung Varut Vardhanabhuti Machine learning application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph |
description |
Abstract Triaging and prioritising patients for RT-PCR test had been essential in the management of COVID-19 in resource-scarce countries. In this study, we applied machine learning (ML) to the task of detection of SARS-CoV-2 infection using basic laboratory markers. We performed the statistical analysis and trained an ML model on a retrospective cohort of 5148 patients from 24 hospitals in Hong Kong to classify COVID-19 and other aetiology of pneumonia. We validated the model on three temporal validation sets from different waves of infection in Hong Kong. For predicting SARS-CoV-2 infection, the ML model achieved high AUCs and specificity but low sensitivity in all three validation sets (AUC: 89.9–95.8%; Sensitivity: 55.5–77.8%; Specificity: 91.5–98.3%). When used in adjunction with radiologist interpretations of chest radiographs, the sensitivity was over 90% while keeping moderate specificity. Our study showed that machine learning model based on readily available laboratory markers could achieve high accuracy in predicting SARS-CoV-2 infection. |
format |
article |
author |
Richard Du Efstratios D. Tsougenis Joshua W. K. Ho Joyce K. Y. Chan Keith W. H. Chiu Benjamin X. H. Fang Ming Yen Ng Siu-Ting Leung Christine S. Y. Lo Ho-Yuen F. Wong Hiu-Yin S. Lam Long-Fung J. Chiu Tiffany Y So Ka Tak Wong Yiu Chung I. Wong Kevin Yu Yiu-Cheong Yeung Thomas Chik Joanna W. K. Pang Abraham Ka-chung Wai Michael D. Kuo Tina P. W. Lam Pek-Lan Khong Ngai-Tseung Cheung Varut Vardhanabhuti |
author_facet |
Richard Du Efstratios D. Tsougenis Joshua W. K. Ho Joyce K. Y. Chan Keith W. H. Chiu Benjamin X. H. Fang Ming Yen Ng Siu-Ting Leung Christine S. Y. Lo Ho-Yuen F. Wong Hiu-Yin S. Lam Long-Fung J. Chiu Tiffany Y So Ka Tak Wong Yiu Chung I. Wong Kevin Yu Yiu-Cheong Yeung Thomas Chik Joanna W. K. Pang Abraham Ka-chung Wai Michael D. Kuo Tina P. W. Lam Pek-Lan Khong Ngai-Tseung Cheung Varut Vardhanabhuti |
author_sort |
Richard Du |
title |
Machine learning application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph |
title_short |
Machine learning application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph |
title_full |
Machine learning application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph |
title_fullStr |
Machine learning application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph |
title_full_unstemmed |
Machine learning application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph |
title_sort |
machine learning application for the prediction of sars-cov-2 infection using blood tests and chest radiograph |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f01d34f4f45d4097bfbec59ffa2e34af |
work_keys_str_mv |
AT richarddu machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT efstratiosdtsougenis machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT joshuawkho machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT joycekychan machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT keithwhchiu machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT benjaminxhfang machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT mingyenng machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT siutingleung machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT christinesylo machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT hoyuenfwong machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT hiuyinslam machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT longfungjchiu machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT tiffanyyso machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT katakwong machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT yiuchungiwong machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT kevinyu machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT yiucheongyeung machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT thomaschik machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT joannawkpang machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT abrahamkachungwai machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT michaeldkuo machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT tinapwlam machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT peklankhong machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT ngaitseungcheung machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph AT varutvardhanabhuti machinelearningapplicationforthepredictionofsarscov2infectionusingbloodtestsandchestradiograph |
_version_ |
1718387360961396736 |