Relationship between Sea Surface Drag Coefficient and Wave State
The sea surface drag coefficient plays an important role in momentum transmission between the atmosphere and the ocean, which is affected by ocean waves. The total air–sea momentum flux consists of effective momentum flux and sea spray momentum flux. Sea spray momentum flux involves sea surface drag...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f048596a2e5549599deb96edf145eecc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The sea surface drag coefficient plays an important role in momentum transmission between the atmosphere and the ocean, which is affected by ocean waves. The total air–sea momentum flux consists of effective momentum flux and sea spray momentum flux. Sea spray momentum flux involves sea surface drag, which is largely affected by the ocean wave state. Under strong winds, the sea surface drag coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>D</mi></msub></mrow></semantics></math></inline-formula>) does not increase linearly with the increasing wind speed, namely, the increase of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>D</mi></msub></mrow></semantics></math></inline-formula> is inhibited by strong winds. In this study, a sea surface drag coefficient is constructed that can be applied to the calculation of the air–sea momentum flux under high wind speed. The sea surface drag coefficient also considers the influence of wave state and sea spray droplets generated by wave breaking. Specially, the wave-dependent sea spray generation function is employed to calculate sea spray momentum flux. This facilitates the analysis not only on the sensitivity of the sea spray momentum flux to wave age, but also on the effect of wave state on the effective <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>D</mi></msub></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>D</mi><mo>,</mo><mo> </mo><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></mrow></semantics></math></inline-formula>) under strong winds. Our results indicate that wave age plays an important role in determining <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>D</mi></msub></mrow></semantics></math></inline-formula>. When the wave age is >0.4, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>D</mi></msub></mrow></semantics></math></inline-formula> decreases with the wave age. However, when the wave age is ≤0.4, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>D</mi></msub></mrow></semantics></math></inline-formula> increases with the wave age at low and moderate wind speeds but tends to decrease with the wave age at high wind speeds. |
---|