Bayesian force fields from active learning for simulation of inter-dimensional transformation of stanene
Abstract We present a way to dramatically accelerate Gaussian process models for interatomic force fields based on many-body kernels by mapping both forces and uncertainties onto functions of low-dimensional features. This allows for automated active learning of models combining near-quantum accurac...
Guardado en:
Autores principales: | Yu Xie, Jonathan Vandermause, Lixin Sun, Andrea Cepellotti, Boris Kozinsky |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f04a0cef3d874031836d2287821283f8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture
por: Cheol Woo Park, et al.
Publicado: (2021) -
Deep Bayesian local crystallography
por: Sergei V. Kalinin, et al.
Publicado: (2021) -
Bayesian optimization with adaptive surrogate models for automated experimental design
por: Bowen Lei, et al.
Publicado: (2021) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
por: Rama K. Vasudevan, et al.
Publicado: (2021) -
A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts
por: Osman Mamun, et al.
Publicado: (2020)