Discovery, characterization and functional improvement of kumamonamide as a novel plant growth inhibitor that disturbs plant microtubules

Abstract The discovery and useful application of natural products can help improve human life. Chemicals that inhibit plant growth are broadly utilized as herbicides to control weeds. As various types of herbicides are required, the identification of compounds with novel modes of action is desirable...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Takashi Ishida, Haruna Yoshimura, Masatsugu Takekawa, Takumi Higaki, Takashi Ideue, Masaki Hatano, Masayuki Igarashi, Tokio Tani, Shinichiro Sawa, Hayato Ishikawa
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f04f248822be443f8ef9a467bc388a1f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The discovery and useful application of natural products can help improve human life. Chemicals that inhibit plant growth are broadly utilized as herbicides to control weeds. As various types of herbicides are required, the identification of compounds with novel modes of action is desirable. In the present study, we discovered a novel N-alkoxypyrrole compound, kumamonamide from Streptomyces werraensis MK493-CF1 and established a total synthesis procedure. Resulted in the bioactivity assays, we found that kumamonamic acid, a synthetic intermediate of kumamonamide, is a potential plant growth inhibitor. Further, we developed various derivatives of kumamonamic acid, including a kumamonamic acid nonyloxy derivative (KAND), which displayed high herbicidal activity without adverse effects on HeLa cell growth. We also detected that kumamonamic acid derivatives disturb plant microtubules; and additionally, that KAND affected actin filaments and induced cell death. These multifaceted effects differ from those of known microtubule inhibitors, suggesting a novel mode of action of kumamonamic acid, which represents an important lead for the development of new herbicides.