Graph hierarchy: a novel framework to analyse hierarchical structures in complex networks

Abstract Trophic coherence, a measure of a graph’s hierarchical organisation, has been shown to be linked to a graph’s structural and dynamical aspects such as cyclicity, stability and normality. Trophic levels of vertices can reveal their functional properties, partition and rank the vertices accor...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Giannis Moutsinas, Choudhry Shuaib, Weisi Guo, Stephen Jarvis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f057a85876a74abc9e7182332521383b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f057a85876a74abc9e7182332521383b
record_format dspace
spelling oai:doaj.org-article:f057a85876a74abc9e7182332521383b2021-12-02T15:39:41ZGraph hierarchy: a novel framework to analyse hierarchical structures in complex networks10.1038/s41598-021-93161-42045-2322https://doaj.org/article/f057a85876a74abc9e7182332521383b2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93161-4https://doaj.org/toc/2045-2322Abstract Trophic coherence, a measure of a graph’s hierarchical organisation, has been shown to be linked to a graph’s structural and dynamical aspects such as cyclicity, stability and normality. Trophic levels of vertices can reveal their functional properties, partition and rank the vertices accordingly. Trophic levels and hence trophic coherence can only be defined on graphs with basal vertices, i.e. vertices with zero in-degree. Consequently, trophic analysis of graphs had been restricted until now. In this paper we introduce a hierarchical framework which can be defined on any simple graph. Within this general framework, we develop several metrics: hierarchical levels, a generalisation of the notion of trophic levels, influence centrality, a measure of a vertex’s ability to influence dynamics, and democracy coefficient, a measure of overall feedback in the system. We discuss how our generalisation relates to previous attempts and what new insights are illuminated on the topological and dynamical aspects of graphs. Finally, we show how the hierarchical structure of a network relates to the incidence rate in a SIS epidemic model and the economic insights we can gain through it.Giannis MoutsinasChoudhry ShuaibWeisi GuoStephen JarvisNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Giannis Moutsinas
Choudhry Shuaib
Weisi Guo
Stephen Jarvis
Graph hierarchy: a novel framework to analyse hierarchical structures in complex networks
description Abstract Trophic coherence, a measure of a graph’s hierarchical organisation, has been shown to be linked to a graph’s structural and dynamical aspects such as cyclicity, stability and normality. Trophic levels of vertices can reveal their functional properties, partition and rank the vertices accordingly. Trophic levels and hence trophic coherence can only be defined on graphs with basal vertices, i.e. vertices with zero in-degree. Consequently, trophic analysis of graphs had been restricted until now. In this paper we introduce a hierarchical framework which can be defined on any simple graph. Within this general framework, we develop several metrics: hierarchical levels, a generalisation of the notion of trophic levels, influence centrality, a measure of a vertex’s ability to influence dynamics, and democracy coefficient, a measure of overall feedback in the system. We discuss how our generalisation relates to previous attempts and what new insights are illuminated on the topological and dynamical aspects of graphs. Finally, we show how the hierarchical structure of a network relates to the incidence rate in a SIS epidemic model and the economic insights we can gain through it.
format article
author Giannis Moutsinas
Choudhry Shuaib
Weisi Guo
Stephen Jarvis
author_facet Giannis Moutsinas
Choudhry Shuaib
Weisi Guo
Stephen Jarvis
author_sort Giannis Moutsinas
title Graph hierarchy: a novel framework to analyse hierarchical structures in complex networks
title_short Graph hierarchy: a novel framework to analyse hierarchical structures in complex networks
title_full Graph hierarchy: a novel framework to analyse hierarchical structures in complex networks
title_fullStr Graph hierarchy: a novel framework to analyse hierarchical structures in complex networks
title_full_unstemmed Graph hierarchy: a novel framework to analyse hierarchical structures in complex networks
title_sort graph hierarchy: a novel framework to analyse hierarchical structures in complex networks
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f057a85876a74abc9e7182332521383b
work_keys_str_mv AT giannismoutsinas graphhierarchyanovelframeworktoanalysehierarchicalstructuresincomplexnetworks
AT choudhryshuaib graphhierarchyanovelframeworktoanalysehierarchicalstructuresincomplexnetworks
AT weisiguo graphhierarchyanovelframeworktoanalysehierarchicalstructuresincomplexnetworks
AT stephenjarvis graphhierarchyanovelframeworktoanalysehierarchicalstructuresincomplexnetworks
_version_ 1718385908243234816