Predicting the risk of suicide by analyzing the text of clinical notes.
We developed linguistics-driven prediction models to estimate the risk of suicide. These models were generated from unstructured clinical notes taken from a national sample of U.S. Veterans Administration (VA) medical records. We created three matched cohorts: veterans who committed suicide, veteran...
Enregistré dans:
Auteurs principaux: | Chris Poulin, Brian Shiner, Paul Thompson, Linas Vepstas, Yinong Young-Xu, Benjamin Goertzel, Bradley Watts, Laura Flashman, Thomas McAllister |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2014
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f06d40e8e81b47cb9a769b49ccc518ec |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Quotes, Paraphrases, and Allusions: Text Reuse in Sanskrit Commentaries and How to Encode It
par: Patrick McAllister
Publié: (2021) -
Content-analyzing political texts : a quantitative approach /
par: Alonso, Sonia
Publié: (2012) -
Revealing semantic and emotional structure of suicide notes with cognitive network science
par: Andreia Sofia Teixeira, et autres
Publié: (2021) -
REVIEW: Noted: Perfect media research text for undergraduates
par: Christopher Thomson
Publié: (2018) -
Not discussed: Inequalities in narrative text data for suicide deaths in the National Violent Death Reporting System.
par: Briana Mezuk, et autres
Publié: (2021)