Predicting the risk of suicide by analyzing the text of clinical notes.
We developed linguistics-driven prediction models to estimate the risk of suicide. These models were generated from unstructured clinical notes taken from a national sample of U.S. Veterans Administration (VA) medical records. We created three matched cohorts: veterans who committed suicide, veteran...
Guardado en:
Autores principales: | Chris Poulin, Brian Shiner, Paul Thompson, Linas Vepstas, Yinong Young-Xu, Benjamin Goertzel, Bradley Watts, Laura Flashman, Thomas McAllister |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f06d40e8e81b47cb9a769b49ccc518ec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quotes, Paraphrases, and Allusions: Text Reuse in Sanskrit Commentaries and How to Encode It
por: Patrick McAllister
Publicado: (2021) -
Content-analyzing political texts : a quantitative approach /
por: Alonso, Sonia
Publicado: (2012) -
Revealing semantic and emotional structure of suicide notes with cognitive network science
por: Andreia Sofia Teixeira, et al.
Publicado: (2021) -
REVIEW: Noted: Perfect media research text for undergraduates
por: Christopher Thomson
Publicado: (2018) -
Not discussed: Inequalities in narrative text data for suicide deaths in the National Violent Death Reporting System.
por: Briana Mezuk, et al.
Publicado: (2021)