Alcalase Potato Protein Hydrolysate-PPH902 Enhances Myogenic Differentiation and Enhances Skeletal Muscle Protein Synthesis under High Glucose Condition in C2C12 Cells

Sarcopenia is an aging associated disorder involving skeletal muscle atrophy and a reduction in muscle strength, and there are no pharmaceutical interventions available thus far. Moreover, conditions such as hyperglycaemia are known to further intensify muscle degradation. Therefore, novel strategie...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yi-Ju Chen, Ching-Fang Chang, Jayaraman Angayarkanni, Wan-Teng Lin
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/f07f1e526f904d49899a1a06a971bf15
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Sarcopenia is an aging associated disorder involving skeletal muscle atrophy and a reduction in muscle strength, and there are no pharmaceutical interventions available thus far. Moreover, conditions such as hyperglycaemia are known to further intensify muscle degradation. Therefore, novel strategies to attenuate skeletal muscle loss are essential to enhance muscle function and thereby improve the quality of life in diabetic individuals. In this study, we have investigated the efficiency of a potato peptide hydrolysate PPH902 for its cytoprotective effects in skeletal muscle cells. PPH902 treatment in C2C12 cells showed the dose-dependent activation of the Akt/mTOR signalling pathway that is involved in skeletal myogenesis. According to Western blotting analysis, PPH902 induced the phosphorylation of Akt, mTOR proteins and induced the myogenic differentiation of C2C12 myoblasts in a differentiation medium. The phosphorylation myogenic transcription factor Foxo3A was also found to be increased in the cells treated with PPH902. In addition, treatment with PPH902 ameliorated the high glucose induced reduction in cell viability in a dose-dependent manner. Moreover, the number of myotubes in a differentiation medium reduced upon high glucose challenge, but treatment with PPH902 increased the number of differentiated myotubes. Further, the phosphorylations of AMPK and mitochondrial-related transcription factors such as PGC-1α were suppressed upon high glucose challenge but PPH902 treatment restored the protein levels. We demonstrate, for the first time, that a specific potato peptide has a therapeutic effect against sarcopenia. In addition, PPH902 improved the myogenic differentiation and their mitochondrial biogenesis and further improved myogenic protein and inhibited muscle protein degradation in C2C12 cells challenged under a high glucose condition.