Prediction of kinase inhibitors binding modes with machine learning and reduced descriptor sets
Abstract Protein kinases are receiving wide research interest, from drug perspective, due to their important roles in human body. Available kinase-inhibitor data, including crystallized structures, revealed many details about the mechanism of inhibition and binding modes. The understanding and analy...
Guardado en:
Autores principales: | Ibrahim Abdelbaky, Hilal Tayara, Kil To Chong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f0877084a5104e888bb76bd9c90bee5b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Drug Therapeutic-Use Class Prediction and Repurposing Using Graph Convolutional Networks
por: Mapopa Chipofya, et al.
Publicado: (2021) -
DCNN-4mC: Densely connected neural network based N4-methylcytosine site prediction in multiple species
por: Mobeen Ur Rehman, et al.
Publicado: (2021) -
Machine Learning Models for the Classification of CK2 Natural Products Inhibitors with Molecular Fingerprint Descriptors
por: Yuting Liu, et al.
Publicado: (2021) -
Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient?
por: G. Skoraczyński, et al.
Publicado: (2017) -
Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
por: Cristian R. Munteanu, et al.
Publicado: (2021)