Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI
Many approaches exist to process data from individual imaging modalities, but integrating them is challenging. The authors develop an automated resource that enables co-registered network- and tract-level analysis of macroscopic in-vivo imaging and microscopic imaging of cleared tissue.
Guardado en:
Autores principales: | Maged Goubran, Christoph Leuze, Brian Hsueh, Markus Aswendt, Li Ye, Qiyuan Tian, Michelle Y. Cheng, Ailey Crow, Gary K. Steinberg, Jennifer A. McNab, Karl Deisseroth, Michael Zeineh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f0971bd01cd840d797c0f0138c81f2fa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution
por: Fuyixue Wang, et al.
Publicado: (2021) -
Robustness of PET Radiomics Features: Impact of Co-Registration with MRI
por: Alessandro Stefano, et al.
Publicado: (2021) -
Sequencing the connectome.
por: Anthony M Zador, et al.
Publicado: (2012) -
Automating multimodal microscopy with NanoJ-Fluidics
por: Pedro Almada, et al.
Publicado: (2019) -
Functional Geometry of Human Connectomes
por: Bosiljka Tadić, et al.
Publicado: (2019)