Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI
Many approaches exist to process data from individual imaging modalities, but integrating them is challenging. The authors develop an automated resource that enables co-registered network- and tract-level analysis of macroscopic in-vivo imaging and microscopic imaging of cleared tissue.
Enregistré dans:
Auteurs principaux: | Maged Goubran, Christoph Leuze, Brian Hsueh, Markus Aswendt, Li Ye, Qiyuan Tian, Michelle Y. Cheng, Ailey Crow, Gary K. Steinberg, Jennifer A. McNab, Karl Deisseroth, Michael Zeineh |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f0971bd01cd840d797c0f0138c81f2fa |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution
par: Fuyixue Wang, et autres
Publié: (2021) -
Robustness of PET Radiomics Features: Impact of Co-Registration with MRI
par: Alessandro Stefano, et autres
Publié: (2021) -
Sequencing the connectome.
par: Anthony M Zador, et autres
Publié: (2012) -
Automating multimodal microscopy with NanoJ-Fluidics
par: Pedro Almada, et autres
Publié: (2019) -
Functional Geometry of Human Connectomes
par: Bosiljka Tadić, et autres
Publié: (2019)