Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network
Not all mushrooms are edible because some are poisonous. The edible or poisonous mushrooms can be identified by paying attention to the morphological characteristics of mushrooms, such as shape, color, and texture. There is an issue: some poisonous mushrooms have morphological features that are very...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN ID |
Publicado: |
P3M Politeknik Negeri Banjarmasin
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f097ec3d6a0a430eb8b305d1107ed144 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f097ec3d6a0a430eb8b305d1107ed144 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f097ec3d6a0a430eb8b305d1107ed1442021-12-02T17:25:02ZPengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network2598-32452598-328810.31961/eltikom.v5i2.428https://doaj.org/article/f097ec3d6a0a430eb8b305d1107ed1442021-09-01T00:00:00Zhttps://eltikom.poliban.ac.id/index.php/eltikom/article/view/428https://doaj.org/toc/2598-3245https://doaj.org/toc/2598-3288Not all mushrooms are edible because some are poisonous. The edible or poisonous mushrooms can be identified by paying attention to the morphological characteristics of mushrooms, such as shape, color, and texture. There is an issue: some poisonous mushrooms have morphological features that are very similar to edible mushrooms. It can lead to the misidentification of mushrooms. This work aims to recognize edible or poisonous mushrooms using a Deep Learning approach, typically Convolutional Neural Networks. Because the training process will take a long time, Transfer Learning was applied to accelerate the learning process. Transfer learning uses an existing model as a base model in our neural network by transferring information from the related domain. There are Four base models are used, namely MobileNets, MobileNetV2, ResNet50, and VGG19. Each base model will be subjected to several experimental scenarios, such as setting the different learning rate values for pre-training and fine-tuning. The results show that the Convolutional Neural Network with transfer learning method can recognize edible or poisonous mushrooms with more than 86% accuracy. Moreover, the best accuracy result is 92.19% obtained from the base model of MobileNetsV2 with a learning rate of 0,00001 at the pre-training stage and 0,0001 at the fine-tuning stage.Elok Iedfitra HaksoroAbas SetiawanP3M Politeknik Negeri Banjarmasinarticleconvolutional neural networkjamur dapat dikonsumsimobilenetsmobilenetv2transfer learningElectrical engineering. Electronics. Nuclear engineeringTK1-9971Information technologyT58.5-58.64ENIDJurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer, Vol 5, Iss 2, Pp 81-91 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN ID |
topic |
convolutional neural network jamur dapat dikonsumsi mobilenets mobilenetv2 transfer learning Electrical engineering. Electronics. Nuclear engineering TK1-9971 Information technology T58.5-58.64 |
spellingShingle |
convolutional neural network jamur dapat dikonsumsi mobilenets mobilenetv2 transfer learning Electrical engineering. Electronics. Nuclear engineering TK1-9971 Information technology T58.5-58.64 Elok Iedfitra Haksoro Abas Setiawan Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network |
description |
Not all mushrooms are edible because some are poisonous. The edible or poisonous mushrooms can be identified by paying attention to the morphological characteristics of mushrooms, such as shape, color, and texture. There is an issue: some poisonous mushrooms have morphological features that are very similar to edible mushrooms. It can lead to the misidentification of mushrooms. This work aims to recognize edible or poisonous mushrooms using a Deep Learning approach, typically Convolutional Neural Networks. Because the training process will take a long time, Transfer Learning was applied to accelerate the learning process. Transfer learning uses an existing model as a base model in our neural network by transferring information from the related domain. There are Four base models are used, namely MobileNets, MobileNetV2, ResNet50, and VGG19. Each base model will be subjected to several experimental scenarios, such as setting the different learning rate values for pre-training and fine-tuning. The results show that the Convolutional Neural Network with transfer learning method can recognize edible or poisonous mushrooms with more than 86% accuracy. Moreover, the best accuracy result is 92.19% obtained from the base model of MobileNetsV2 with a learning rate of 0,00001 at the pre-training stage and 0,0001 at the fine-tuning stage. |
format |
article |
author |
Elok Iedfitra Haksoro Abas Setiawan |
author_facet |
Elok Iedfitra Haksoro Abas Setiawan |
author_sort |
Elok Iedfitra Haksoro |
title |
Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network |
title_short |
Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network |
title_full |
Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network |
title_fullStr |
Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network |
title_full_unstemmed |
Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network |
title_sort |
pengenalan jamur yang dapat dikonsumsi menggunakan metode transfer learning pada convolutional neural network |
publisher |
P3M Politeknik Negeri Banjarmasin |
publishDate |
2021 |
url |
https://doaj.org/article/f097ec3d6a0a430eb8b305d1107ed144 |
work_keys_str_mv |
AT elokiedfitrahaksoro pengenalanjamuryangdapatdikonsumsimenggunakanmetodetransferlearningpadaconvolutionalneuralnetwork AT abassetiawan pengenalanjamuryangdapatdikonsumsimenggunakanmetodetransferlearningpadaconvolutionalneuralnetwork |
_version_ |
1718380942549057536 |