Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network

Not all mushrooms are edible because some are poisonous. The edible or poisonous mushrooms can be identified by paying attention to the morphological characteristics of mushrooms, such as shape, color, and texture. There is an issue: some poisonous mushrooms have morphological features that are very...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elok Iedfitra Haksoro, Abas Setiawan
Formato: article
Lenguaje:EN
ID
Publicado: P3M Politeknik Negeri Banjarmasin 2021
Materias:
Acceso en línea:https://doaj.org/article/f097ec3d6a0a430eb8b305d1107ed144
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f097ec3d6a0a430eb8b305d1107ed144
record_format dspace
spelling oai:doaj.org-article:f097ec3d6a0a430eb8b305d1107ed1442021-12-02T17:25:02ZPengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network2598-32452598-328810.31961/eltikom.v5i2.428https://doaj.org/article/f097ec3d6a0a430eb8b305d1107ed1442021-09-01T00:00:00Zhttps://eltikom.poliban.ac.id/index.php/eltikom/article/view/428https://doaj.org/toc/2598-3245https://doaj.org/toc/2598-3288Not all mushrooms are edible because some are poisonous. The edible or poisonous mushrooms can be identified by paying attention to the morphological characteristics of mushrooms, such as shape, color, and texture. There is an issue: some poisonous mushrooms have morphological features that are very similar to edible mushrooms. It can lead to the misidentification of mushrooms. This work aims to recognize edible or poisonous mushrooms using a Deep Learning approach, typically Convolutional Neural Networks. Because the training process will take a long time, Transfer Learning was applied to accelerate the learning process. Transfer learning uses an existing model as a base model in our neural network by transferring information from the related domain. There are Four base models are used, namely MobileNets, MobileNetV2, ResNet50, and VGG19. Each base model will be subjected to several experimental scenarios, such as setting the different learning rate values for pre-training and fine-tuning. The results show that the Convolutional Neural Network with transfer learning method can recognize edible or poisonous mushrooms with more than 86% accuracy. Moreover, the best accuracy result is 92.19% obtained from the base model of MobileNetsV2 with a learning rate of 0,00001 at the pre-training stage and 0,0001 at the fine-tuning stage.Elok Iedfitra HaksoroAbas SetiawanP3M Politeknik Negeri Banjarmasinarticleconvolutional neural networkjamur dapat dikonsumsimobilenetsmobilenetv2transfer learningElectrical engineering. Electronics. Nuclear engineeringTK1-9971Information technologyT58.5-58.64ENIDJurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer, Vol 5, Iss 2, Pp 81-91 (2021)
institution DOAJ
collection DOAJ
language EN
ID
topic convolutional neural network
jamur dapat dikonsumsi
mobilenets
mobilenetv2
transfer learning
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Information technology
T58.5-58.64
spellingShingle convolutional neural network
jamur dapat dikonsumsi
mobilenets
mobilenetv2
transfer learning
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Information technology
T58.5-58.64
Elok Iedfitra Haksoro
Abas Setiawan
Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network
description Not all mushrooms are edible because some are poisonous. The edible or poisonous mushrooms can be identified by paying attention to the morphological characteristics of mushrooms, such as shape, color, and texture. There is an issue: some poisonous mushrooms have morphological features that are very similar to edible mushrooms. It can lead to the misidentification of mushrooms. This work aims to recognize edible or poisonous mushrooms using a Deep Learning approach, typically Convolutional Neural Networks. Because the training process will take a long time, Transfer Learning was applied to accelerate the learning process. Transfer learning uses an existing model as a base model in our neural network by transferring information from the related domain. There are Four base models are used, namely MobileNets, MobileNetV2, ResNet50, and VGG19. Each base model will be subjected to several experimental scenarios, such as setting the different learning rate values for pre-training and fine-tuning. The results show that the Convolutional Neural Network with transfer learning method can recognize edible or poisonous mushrooms with more than 86% accuracy. Moreover, the best accuracy result is 92.19% obtained from the base model of MobileNetsV2 with a learning rate of 0,00001 at the pre-training stage and 0,0001 at the fine-tuning stage.
format article
author Elok Iedfitra Haksoro
Abas Setiawan
author_facet Elok Iedfitra Haksoro
Abas Setiawan
author_sort Elok Iedfitra Haksoro
title Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network
title_short Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network
title_full Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network
title_fullStr Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network
title_full_unstemmed Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network
title_sort pengenalan jamur yang dapat dikonsumsi menggunakan metode transfer learning pada convolutional neural network
publisher P3M Politeknik Negeri Banjarmasin
publishDate 2021
url https://doaj.org/article/f097ec3d6a0a430eb8b305d1107ed144
work_keys_str_mv AT elokiedfitrahaksoro pengenalanjamuryangdapatdikonsumsimenggunakanmetodetransferlearningpadaconvolutionalneuralnetwork
AT abassetiawan pengenalanjamuryangdapatdikonsumsimenggunakanmetodetransferlearningpadaconvolutionalneuralnetwork
_version_ 1718380942549057536