A Study on Railway Surface Defects Detection Based on Machine Vision
The detection of rail surface defects is an important tool to ensure the safe operation of rail transit. Due to the complex diversity of track surface defect features and the small size of the defect area, it is difficult to obtain satisfying detection results by traditional machine vision methods....
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f0d2f43b37334dc191a8c02bd32f0e10 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f0d2f43b37334dc191a8c02bd32f0e10 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f0d2f43b37334dc191a8c02bd32f0e102021-11-25T17:29:39ZA Study on Railway Surface Defects Detection Based on Machine Vision10.3390/e231114371099-4300https://doaj.org/article/f0d2f43b37334dc191a8c02bd32f0e102021-10-01T00:00:00Zhttps://www.mdpi.com/1099-4300/23/11/1437https://doaj.org/toc/1099-4300The detection of rail surface defects is an important tool to ensure the safe operation of rail transit. Due to the complex diversity of track surface defect features and the small size of the defect area, it is difficult to obtain satisfying detection results by traditional machine vision methods. The existing deep learning-based methods have the problems of large model sizes, excessive parameters, low accuracy and slow speed. Therefore, this paper proposes a new method based on an improved YOLOv4 (You Only Look Once, YOLO) for railway surface defect detection. In this method, MobileNetv3 is used as the backbone network of YOLOv4 to extract image features, and at the same time, deep separable convolution is applied on the PANet layer in YOLOv4, which realizes the lightweight network and real-time detection of the railway surface. The test results show that, compared with YOLOv4, the study can reduce the amount of the parameters by 78.04%, speed up the detection by 10.36 frames per second and decrease the model volume by 78%. Compared with other methods, the proposed method can achieve a higher detection accuracy, making it suitable for the fast and accurate detection of railway surface defects.Tangbo BaiJialin GaoJianwei YangDechen YaoMDPI AGarticledeep learningrail surface defect detectionmachine visionYOLOv4MobileNetV3ScienceQAstrophysicsQB460-466PhysicsQC1-999ENEntropy, Vol 23, Iss 1437, p 1437 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
deep learning rail surface defect detection machine vision YOLOv4 MobileNetV3 Science Q Astrophysics QB460-466 Physics QC1-999 |
spellingShingle |
deep learning rail surface defect detection machine vision YOLOv4 MobileNetV3 Science Q Astrophysics QB460-466 Physics QC1-999 Tangbo Bai Jialin Gao Jianwei Yang Dechen Yao A Study on Railway Surface Defects Detection Based on Machine Vision |
description |
The detection of rail surface defects is an important tool to ensure the safe operation of rail transit. Due to the complex diversity of track surface defect features and the small size of the defect area, it is difficult to obtain satisfying detection results by traditional machine vision methods. The existing deep learning-based methods have the problems of large model sizes, excessive parameters, low accuracy and slow speed. Therefore, this paper proposes a new method based on an improved YOLOv4 (You Only Look Once, YOLO) for railway surface defect detection. In this method, MobileNetv3 is used as the backbone network of YOLOv4 to extract image features, and at the same time, deep separable convolution is applied on the PANet layer in YOLOv4, which realizes the lightweight network and real-time detection of the railway surface. The test results show that, compared with YOLOv4, the study can reduce the amount of the parameters by 78.04%, speed up the detection by 10.36 frames per second and decrease the model volume by 78%. Compared with other methods, the proposed method can achieve a higher detection accuracy, making it suitable for the fast and accurate detection of railway surface defects. |
format |
article |
author |
Tangbo Bai Jialin Gao Jianwei Yang Dechen Yao |
author_facet |
Tangbo Bai Jialin Gao Jianwei Yang Dechen Yao |
author_sort |
Tangbo Bai |
title |
A Study on Railway Surface Defects Detection Based on Machine Vision |
title_short |
A Study on Railway Surface Defects Detection Based on Machine Vision |
title_full |
A Study on Railway Surface Defects Detection Based on Machine Vision |
title_fullStr |
A Study on Railway Surface Defects Detection Based on Machine Vision |
title_full_unstemmed |
A Study on Railway Surface Defects Detection Based on Machine Vision |
title_sort |
study on railway surface defects detection based on machine vision |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/f0d2f43b37334dc191a8c02bd32f0e10 |
work_keys_str_mv |
AT tangbobai astudyonrailwaysurfacedefectsdetectionbasedonmachinevision AT jialingao astudyonrailwaysurfacedefectsdetectionbasedonmachinevision AT jianweiyang astudyonrailwaysurfacedefectsdetectionbasedonmachinevision AT dechenyao astudyonrailwaysurfacedefectsdetectionbasedonmachinevision AT tangbobai studyonrailwaysurfacedefectsdetectionbasedonmachinevision AT jialingao studyonrailwaysurfacedefectsdetectionbasedonmachinevision AT jianweiyang studyonrailwaysurfacedefectsdetectionbasedonmachinevision AT dechenyao studyonrailwaysurfacedefectsdetectionbasedonmachinevision |
_version_ |
1718412321201586176 |