A Study on Railway Surface Defects Detection Based on Machine Vision
The detection of rail surface defects is an important tool to ensure the safe operation of rail transit. Due to the complex diversity of track surface defect features and the small size of the defect area, it is difficult to obtain satisfying detection results by traditional machine vision methods....
Guardado en:
Autores principales: | Tangbo Bai, Jialin Gao, Jianwei Yang, Dechen Yao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f0d2f43b37334dc191a8c02bd32f0e10 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Topological defect-mediated skyrmion annihilation in three dimensions
por: Max T. Birch, et al.
Publicado: (2021) -
YOT-Net: YOLOv3 Combined Triplet Loss Network for Copper Elbow Surface Defect Detection
por: Yuanqing Xian, et al.
Publicado: (2021) -
COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images
por: Shamima Akter, et al.
Publicado: (2021) -
Magnetic and f-electron effects in LaNiO2 and NdNiO2 nickelates with cuprate-like $$3{d}_{{x}^{2}-{y}^{2}}$$ 3 d x 2 − y 2 band
por: Ruiqi Zhang, et al.
Publicado: (2021) -
Asymmetric bias-induced barrier lowering as an alternative origin of current rectification in geometric diodes
por: Mengmeng Bai, et al.
Publicado: (2021)