A Study on Railway Surface Defects Detection Based on Machine Vision
The detection of rail surface defects is an important tool to ensure the safe operation of rail transit. Due to the complex diversity of track surface defect features and the small size of the defect area, it is difficult to obtain satisfying detection results by traditional machine vision methods....
Enregistré dans:
Auteurs principaux: | Tangbo Bai, Jialin Gao, Jianwei Yang, Dechen Yao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f0d2f43b37334dc191a8c02bd32f0e10 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Topological defect-mediated skyrmion annihilation in three dimensions
par: Max T. Birch, et autres
Publié: (2021) -
YOT-Net: YOLOv3 Combined Triplet Loss Network for Copper Elbow Surface Defect Detection
par: Yuanqing Xian, et autres
Publié: (2021) -
COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images
par: Shamima Akter, et autres
Publié: (2021) -
Magnetic and f-electron effects in LaNiO2 and NdNiO2 nickelates with cuprate-like $$3{d}_{{x}^{2}-{y}^{2}}$$ 3 d x 2 − y 2 band
par: Ruiqi Zhang, et autres
Publié: (2021) -
Asymmetric bias-induced barrier lowering as an alternative origin of current rectification in geometric diodes
par: Mengmeng Bai, et autres
Publié: (2021)