Improved Dual-Channel Attention Mechanism Image Classification Method for Lightweight Network
In order to solve the problems of large volume and high hardware requirements of deep convolutional neural network model in missile-borne terminal environment, a lightweight network structure based on improved dual-channel attention mechanism is constructed. Aiming at the problem that the network li...
Guardado en:
Autor principal: | Song Tainian, Qin Weiwei, Liang Zhuo, Wang Kui, Liu Gang |
---|---|
Formato: | article |
Lenguaje: | ZH |
Publicado: |
Editorial Office of Aero Weaponry
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f0d4280fd3174199839c86dc03ae0a88 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dual Quaternion Based Close Proximity Operation for In-Orbit Assembly via Model Predictive Control
por: Chuqi Sun, et al.
Publicado: (2021) -
A Conflict Risk Analysis of MAV\UAV Flight in Shared Airspace
por: ChaoYu Xia, et al.
Publicado: (2021) -
Research on the Fatigue of Small Impulse Turbine Blade Based on the Numerical Simulation and Experimental Tests
por: Shijie Liu, et al.
Publicado: (2021) -
Missile IGC Based on Improved Model Predictive Control and Sliding Mode Observer
por: Li Ma, et al.
Publicado: (2021) -
Interpolation-Based Modeling Methodology for Efficient Aeroelastic Control of a Folding Wing
por: Chengyu Yue, et al.
Publicado: (2021)