Identification of key proteins and lncRNAs in hypertrophic cardiomyopathy by integrated network analysis

Introduction Hypertrophic cardiomyopathy (HCM), a genetically heterogeneous disorder of cardiac myocytes, is one of the main causes of sudden cardiac death of young people. However, the molecular mechanism involved in HCM has remained largely unclear. Of note, non-coding RNAs were reported to play a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaofeng Hu, Guilin Shen, Xiaoli Lu, Guomin Ding, Lishui Shen
Formato: article
Lenguaje:EN
Publicado: Termedia Publishing House 2019
Materias:
R
Acceso en línea:https://doaj.org/article/f0f30c4ee9554312ab3e53bbd6023ded
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f0f30c4ee9554312ab3e53bbd6023ded
record_format dspace
spelling oai:doaj.org-article:f0f30c4ee9554312ab3e53bbd6023ded2021-12-02T19:15:49ZIdentification of key proteins and lncRNAs in hypertrophic cardiomyopathy by integrated network analysis1734-19221896-915110.5114/aoms.2018.75593https://doaj.org/article/f0f30c4ee9554312ab3e53bbd6023ded2019-03-01T00:00:00Zhttps://www.archivesofmedicalscience.com/Identification-of-key-proteins-and-lncRNAs-in-hypertrophic-cardiomyopathy-by-integrated,89691,0,2.htmlhttps://doaj.org/toc/1734-1922https://doaj.org/toc/1896-9151Introduction Hypertrophic cardiomyopathy (HCM), a genetically heterogeneous disorder of cardiac myocytes, is one of the main causes of sudden cardiac death of young people. However, the molecular mechanism involved in HCM has remained largely unclear. Of note, non-coding RNAs were reported to play an important role in human diseases. In this study, we focused on identifying differentially expressed long non-coding RNA (lncRNAs) and mRNAs in HCM by analyzing a public dataset (GSE36961). Material and methods We performed bioinformatics analysis to explore key pathways underlying HCM progression. Gene Ontology (GO) analysis was first performed to evaluate the potential roles of differentially expressed genes and lncRNAs in HCM. Moreover, protein–protein interaction (PPI) networks were constructed to reveal interactions among differentially expressed proteins. Specifically, co-expression networks were also constructed to identify hub lncRNAs in HCM. Results A total of 6147 mRNAs (p < 0.001) and 126 lncRNAs (p < 0.001) were found to be dysregulated in HCM. Gene Ontology (GO) analysis showed that these differentially expressed genes and lncRNAs were associated with metabolism, energy pathways, signal transduction, and cell communication. Moreover, TSPYL3, LOC401431, LOC158376, LOC606724, PDIA3P and LOH3CR2A (p < 0.001) were identified as key lncRNAs in HCM progression. Conclusions Taken together, our analysis revealed a series of lncRNAs and mRNAs that were differentially expressed in HCM and which were involved in HCM progression by regulating pathways, such as metabolism, energy pathways, signal transduction, and cell communication. This study will provide useful information to explore the mechanisms underlying HCM progression and to provide potential candidate biomarkers for diagnosis in HCM.Xiaofeng HuGuilin ShenXiaoli LuGuomin DingLishui ShenTermedia Publishing Housearticlehypertrophic cardiomyopathydifferentially expressed genelong non-coding rnaexpression profilingprotein-protein interaction analysisco-expression analysisMedicineRENArchives of Medical Science, Vol 15, Iss 2, Pp 484-497 (2019)
institution DOAJ
collection DOAJ
language EN
topic hypertrophic cardiomyopathy
differentially expressed gene
long non-coding rna
expression profiling
protein-protein interaction analysis
co-expression analysis
Medicine
R
spellingShingle hypertrophic cardiomyopathy
differentially expressed gene
long non-coding rna
expression profiling
protein-protein interaction analysis
co-expression analysis
Medicine
R
Xiaofeng Hu
Guilin Shen
Xiaoli Lu
Guomin Ding
Lishui Shen
Identification of key proteins and lncRNAs in hypertrophic cardiomyopathy by integrated network analysis
description Introduction Hypertrophic cardiomyopathy (HCM), a genetically heterogeneous disorder of cardiac myocytes, is one of the main causes of sudden cardiac death of young people. However, the molecular mechanism involved in HCM has remained largely unclear. Of note, non-coding RNAs were reported to play an important role in human diseases. In this study, we focused on identifying differentially expressed long non-coding RNA (lncRNAs) and mRNAs in HCM by analyzing a public dataset (GSE36961). Material and methods We performed bioinformatics analysis to explore key pathways underlying HCM progression. Gene Ontology (GO) analysis was first performed to evaluate the potential roles of differentially expressed genes and lncRNAs in HCM. Moreover, protein–protein interaction (PPI) networks were constructed to reveal interactions among differentially expressed proteins. Specifically, co-expression networks were also constructed to identify hub lncRNAs in HCM. Results A total of 6147 mRNAs (p < 0.001) and 126 lncRNAs (p < 0.001) were found to be dysregulated in HCM. Gene Ontology (GO) analysis showed that these differentially expressed genes and lncRNAs were associated with metabolism, energy pathways, signal transduction, and cell communication. Moreover, TSPYL3, LOC401431, LOC158376, LOC606724, PDIA3P and LOH3CR2A (p < 0.001) were identified as key lncRNAs in HCM progression. Conclusions Taken together, our analysis revealed a series of lncRNAs and mRNAs that were differentially expressed in HCM and which were involved in HCM progression by regulating pathways, such as metabolism, energy pathways, signal transduction, and cell communication. This study will provide useful information to explore the mechanisms underlying HCM progression and to provide potential candidate biomarkers for diagnosis in HCM.
format article
author Xiaofeng Hu
Guilin Shen
Xiaoli Lu
Guomin Ding
Lishui Shen
author_facet Xiaofeng Hu
Guilin Shen
Xiaoli Lu
Guomin Ding
Lishui Shen
author_sort Xiaofeng Hu
title Identification of key proteins and lncRNAs in hypertrophic cardiomyopathy by integrated network analysis
title_short Identification of key proteins and lncRNAs in hypertrophic cardiomyopathy by integrated network analysis
title_full Identification of key proteins and lncRNAs in hypertrophic cardiomyopathy by integrated network analysis
title_fullStr Identification of key proteins and lncRNAs in hypertrophic cardiomyopathy by integrated network analysis
title_full_unstemmed Identification of key proteins and lncRNAs in hypertrophic cardiomyopathy by integrated network analysis
title_sort identification of key proteins and lncrnas in hypertrophic cardiomyopathy by integrated network analysis
publisher Termedia Publishing House
publishDate 2019
url https://doaj.org/article/f0f30c4ee9554312ab3e53bbd6023ded
work_keys_str_mv AT xiaofenghu identificationofkeyproteinsandlncrnasinhypertrophiccardiomyopathybyintegratednetworkanalysis
AT guilinshen identificationofkeyproteinsandlncrnasinhypertrophiccardiomyopathybyintegratednetworkanalysis
AT xiaolilu identificationofkeyproteinsandlncrnasinhypertrophiccardiomyopathybyintegratednetworkanalysis
AT guominding identificationofkeyproteinsandlncrnasinhypertrophiccardiomyopathybyintegratednetworkanalysis
AT lishuishen identificationofkeyproteinsandlncrnasinhypertrophiccardiomyopathybyintegratednetworkanalysis
_version_ 1718377006119256064