Predicting hosts based on early SARS-CoV-2 samples and analyzing the 2020 pandemic
Abstract The SARS-CoV-2 pandemic has raised concerns in the identification of the hosts of the virus since the early stages of the outbreak. To address this problem, we proposed a deep learning method, DeepHoF, based on extracting viral genomic features automatically, to predict the host likelihood...
Guardado en:
Autores principales: | Qian Guo, Mo Li, Chunhui Wang, Jinyuan Guo, Xiaoqing Jiang, Jie Tan, Shufang Wu, Peihong Wang, Tingting Xiao, Man Zhou, Zhencheng Fang, Yonghong Xiao, Huaiqiu Zhu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f0f9e0c0db64499c92721fc4f375dd3b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Detection of SARS-CoV-2 in wastewater is influenced by sampling time, concentration method, and target analyzed
por: Nancy J. Pino, et al.
Publicado: (2021) -
Host mitochondrial transcriptome response to SARS-CoV-2 in multiple cell models and clinical samples
por: Brendan Miller, et al.
Publicado: (2021) -
Epidemiological analysis of asymptomatic SARS-CoV-2 transmission in the community: an individual-based model
por: Zuiyuan Guo, et al.
Publicado: (2021) -
Seroprevalence of Antibodies to SARS-CoV-2 in Guangdong Province, China between March to June 2020
por: Cheng Xiao, et al.
Publicado: (2021) -
Identification of oligosaccharyltransferase as a host target for inhibition of SARS-CoV-2 and its variants
por: Yi-Jiao Huang, et al.
Publicado: (2021)