Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler

HF Salem1 ME Abdelrahim2 K Abo Eid3 MA Sharaf3,41Department of Pharmaceutics, 2Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Beni Suef, Beni Suef; 3Department of Chemistry, Helwan University, Ain Helwan, Helwan, Egypt; 4Department of Chemistry, The American University in Ca...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: HF Salem, ME Abdelrahim, K Abo Eid, et al
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2011
Materias:
Acceso en línea:https://doaj.org/article/f112b3e791ac45a38d8937c919bf0523
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f112b3e791ac45a38d8937c919bf0523
record_format dspace
spelling oai:doaj.org-article:f112b3e791ac45a38d8937c919bf05232021-12-02T01:07:54ZNanosized rods agglomerates as a new approach for formulation of a dry powder inhaler1176-91141178-2013https://doaj.org/article/f112b3e791ac45a38d8937c919bf05232011-02-01T00:00:00Zhttp://www.dovepress.com/nanosized-rods-agglomerates-as-a-new-approach-for-formulation-of-a-dry-a6223https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013HF Salem1 ME Abdelrahim2 K Abo Eid3 MA Sharaf3,41Department of Pharmaceutics, 2Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Beni Suef, Beni Suef; 3Department of Chemistry, Helwan University, Ain Helwan, Helwan, Egypt; 4Department of Chemistry, The American University in Cairo, New Cairo, Helwan 11835, EgyptBackground: Nanosized dry powder inhalers provide higher stability for poorly water-soluble drugs as compared with liquid formulations. However, the respirable particles must have a diameter of 1–5 µm in order to deposit in the lungs. Controlled agglomeration of the nanoparticles increases their geometric particle size so they can deposit easily in the lungs. In the lungs, they fall apart to reform nanoparticles, thus enhancing the dissolution rate of the drugs. Theophylline is a bronchodilator with poor solubility in water.Methods: Nanosized theophylline colloids were formed using an amphiphilic surfactant and destabilized using dilute sodium chloride solutions to form the agglomerates.Results: The theophylline nanoparticles thus obtained had an average particle size of 290 nm and a zeta potential of −39.5 mV, whereas the agglomerates were 2.47 µm in size with a zeta potential of −28.9 mV. The release profile was found to follow first-order kinetics (r2 > 0.96). The aerodynamic characteristics of the agglomerated nanoparticles were determined using a cascade impactor. The behavior of the agglomerate was significantly better than unprocessed raw theophylline powder. In addition, the nanoparticles and agglomerates resulted in a significant improvement in the dissolution of theophylline.Conclusion: The results obtained lend support to the hypothesis that controlled agglomeration strategies provide an efficient approach for the delivery of poorly water-soluble drugs into the lungs.Keywords: theophylline, nanoparticles, agglomerates, dry powder inhaler HF SalemME AbdelrahimK Abo Eidet alDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2011, Iss default, Pp 311-320 (2011)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
HF Salem
ME Abdelrahim
K Abo Eid
et al
Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler
description HF Salem1 ME Abdelrahim2 K Abo Eid3 MA Sharaf3,41Department of Pharmaceutics, 2Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Beni Suef, Beni Suef; 3Department of Chemistry, Helwan University, Ain Helwan, Helwan, Egypt; 4Department of Chemistry, The American University in Cairo, New Cairo, Helwan 11835, EgyptBackground: Nanosized dry powder inhalers provide higher stability for poorly water-soluble drugs as compared with liquid formulations. However, the respirable particles must have a diameter of 1–5 µm in order to deposit in the lungs. Controlled agglomeration of the nanoparticles increases their geometric particle size so they can deposit easily in the lungs. In the lungs, they fall apart to reform nanoparticles, thus enhancing the dissolution rate of the drugs. Theophylline is a bronchodilator with poor solubility in water.Methods: Nanosized theophylline colloids were formed using an amphiphilic surfactant and destabilized using dilute sodium chloride solutions to form the agglomerates.Results: The theophylline nanoparticles thus obtained had an average particle size of 290 nm and a zeta potential of −39.5 mV, whereas the agglomerates were 2.47 µm in size with a zeta potential of −28.9 mV. The release profile was found to follow first-order kinetics (r2 > 0.96). The aerodynamic characteristics of the agglomerated nanoparticles were determined using a cascade impactor. The behavior of the agglomerate was significantly better than unprocessed raw theophylline powder. In addition, the nanoparticles and agglomerates resulted in a significant improvement in the dissolution of theophylline.Conclusion: The results obtained lend support to the hypothesis that controlled agglomeration strategies provide an efficient approach for the delivery of poorly water-soluble drugs into the lungs.Keywords: theophylline, nanoparticles, agglomerates, dry powder inhaler
format article
author HF Salem
ME Abdelrahim
K Abo Eid
et al
author_facet HF Salem
ME Abdelrahim
K Abo Eid
et al
author_sort HF Salem
title Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler
title_short Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler
title_full Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler
title_fullStr Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler
title_full_unstemmed Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler
title_sort nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler
publisher Dove Medical Press
publishDate 2011
url https://doaj.org/article/f112b3e791ac45a38d8937c919bf0523
work_keys_str_mv AT hfsalem nanosizedrodsagglomeratesasanewapproachforformulationofadrypowderinhaler
AT meabdelrahim nanosizedrodsagglomeratesasanewapproachforformulationofadrypowderinhaler
AT kaboeid nanosizedrodsagglomeratesasanewapproachforformulationofadrypowderinhaler
AT etal nanosizedrodsagglomeratesasanewapproachforformulationofadrypowderinhaler
_version_ 1718403291437596672