A hybrid cloud read aligner based on MinHash and kmer voting that preserves privacy
Outsourcing computation for genomic data processing offers the ability to allocate massive computing power and storage on demand. Here, Popic and Batzoglou develop a hybrid cloud aligner for sequence read mapping that preserves privacy with competitive accuracy and speed.
Guardado en:
Autores principales: | Victoria Popic, Serafim Batzoglou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f12371efc37a4a2faebcef4b70566fa3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A cloud-based framework for verifiable privacy-preserving spectrum auction
por: Ruinian Li, et al.
Publicado: (2022) -
Privacy Preservation Models for Third-Party Auditor over Cloud Computing: A Survey
por: Abdul Razaque, et al.
Publicado: (2021) -
Privacy-preserving FairSwap: Fairness and privacy interplay
por: Avizheh Sepideh, et al.
Publicado: (2022) -
Privacy preserving divisible double auction with a hybridized TEE-blockchain system
por: Bingyu Liu, et al.
Publicado: (2021) -
A novel fault-tolerant privacy-preserving cloud-based data aggregation scheme for lightweight health data
por: Fawza A. Al-Zumia, et al.
Publicado: (2021)