Joint Estimation of Leaf Area Density and Leaf Angle Distribution Using TLS Point Cloud for Forest Stands

The foliage density <inline-formula><tex-math notation="LaTeX">$(u_l)$</tex-math></inline-formula> and the leaf angle distribution (LAD) are important properties that impact radiation transmission, interception, absorption and, therefore, photosynthesis. Their estim...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ameni Mkaouar, Abdelaziz Kallel, Zouhaier Ben Rabah, Thouraya Sahli Chahed
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
TLS
Acceso en línea:https://doaj.org/article/f12f54c2640c432e8acb83dc43099656
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f12f54c2640c432e8acb83dc43099656
record_format dspace
spelling oai:doaj.org-article:f12f54c2640c432e8acb83dc430996562021-11-18T00:00:13ZJoint Estimation of Leaf Area Density and Leaf Angle Distribution Using TLS Point Cloud for Forest Stands2151-153510.1109/JSTARS.2021.3120521https://doaj.org/article/f12f54c2640c432e8acb83dc430996562021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9576621/https://doaj.org/toc/2151-1535The foliage density <inline-formula><tex-math notation="LaTeX">$(u_l)$</tex-math></inline-formula> and the leaf angle distribution (LAD) are important properties that impact radiation transmission, interception, absorption and, therefore, photosynthesis. Their estimation in a forested scene is a challenging task due to their interdependence in addition to the large variability in the forest structure and the heterogeneity of the vegetation. In this work, we propose to jointly estimate both of them using terrestrial laser scanner (TLS) point cloud for different forest stands. Our approach is based on direct/inverse radiative transfer modeling. The direct model was developed to simulate TLS shots within a vegetation scene having known foliage properties (i.e., <inline-formula><tex-math notation="LaTeX">$u_l$</tex-math></inline-formula> and LAD) resulting in a 3-D point cloud of the observed scene. Then, the inverse model was developed to jointly estimate <inline-formula><tex-math notation="LaTeX">$u_l$</tex-math></inline-formula> and LAD decomposing the 3-D point cloud into voxels. The problem turns out to a high-dimensional cost function to optimize. To do it, the shuffled complex evolution method has been adopted. Our approach is validated with results derived from several simulated homogeneous and heterogeneous vegetation canopies as well as from actual TLS point cloud acquired from Estonian Birch, Pine, and Spruce stands. Our findings revealed that our estimates were considerably close to the actual <inline-formula><tex-math notation="LaTeX">$u_l$</tex-math></inline-formula> and leaf inclination distribution function (LIDF) values with (<inline-formula><tex-math notation="LaTeX">$\text{Biais}_{u_l} \in [0.001 \; 0.006]$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$\text{RMSE}_{u_l} \in [0.019 \; 0.045]$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$\text{RMSE}_{\text{LIDF}} \in [ 0.019 \; 0.038]$</tex-math></inline-formula>) for homogeneous dataset and (<inline-formula><tex-math notation="LaTeX">$\text{Biais}_{u_l} \in [0.001 \; 0.045]$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$\text{RMSE}_{u_l} \in [0.023 \; 0.078]$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$\text{RMSE}_{\text{LIDF}} \in [ 0.011 \; 0.018]$</tex-math></inline-formula>) for heterogeneous dataset with different tree crown geometries (i.e., conical and elliptical). In the actual case (Birch, Pine, and Spruce stands), our approach with the traditional and novel techniques, <inline-formula><tex-math notation="LaTeX">$\text{RMSE}_{\text{LAI}}$</tex-math></inline-formula> are 0.526 and 0.105, respectively. The results outperform those of the baseline technique (i.e., assuming spherical LAD) with <inline-formula><tex-math notation="LaTeX">$\text{RMSE}_{\text{LAI}}=2.651$</tex-math></inline-formula>.Ameni MkaouarAbdelaziz KallelZouhaier Ben RabahThouraya Sahli ChahedIEEEarticleLeaf angle distribution (LAD)leaf area densityleaf area index (LAI)leaf propertiesTLSvoxel-based methodOcean engineeringTC1501-1800Geophysics. Cosmic physicsQC801-809ENIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 11095-11115 (2021)
institution DOAJ
collection DOAJ
language EN
topic Leaf angle distribution (LAD)
leaf area density
leaf area index (LAI)
leaf properties
TLS
voxel-based method
Ocean engineering
TC1501-1800
Geophysics. Cosmic physics
QC801-809
spellingShingle Leaf angle distribution (LAD)
leaf area density
leaf area index (LAI)
leaf properties
TLS
voxel-based method
Ocean engineering
TC1501-1800
Geophysics. Cosmic physics
QC801-809
Ameni Mkaouar
Abdelaziz Kallel
Zouhaier Ben Rabah
Thouraya Sahli Chahed
Joint Estimation of Leaf Area Density and Leaf Angle Distribution Using TLS Point Cloud for Forest Stands
description The foliage density <inline-formula><tex-math notation="LaTeX">$(u_l)$</tex-math></inline-formula> and the leaf angle distribution (LAD) are important properties that impact radiation transmission, interception, absorption and, therefore, photosynthesis. Their estimation in a forested scene is a challenging task due to their interdependence in addition to the large variability in the forest structure and the heterogeneity of the vegetation. In this work, we propose to jointly estimate both of them using terrestrial laser scanner (TLS) point cloud for different forest stands. Our approach is based on direct/inverse radiative transfer modeling. The direct model was developed to simulate TLS shots within a vegetation scene having known foliage properties (i.e., <inline-formula><tex-math notation="LaTeX">$u_l$</tex-math></inline-formula> and LAD) resulting in a 3-D point cloud of the observed scene. Then, the inverse model was developed to jointly estimate <inline-formula><tex-math notation="LaTeX">$u_l$</tex-math></inline-formula> and LAD decomposing the 3-D point cloud into voxels. The problem turns out to a high-dimensional cost function to optimize. To do it, the shuffled complex evolution method has been adopted. Our approach is validated with results derived from several simulated homogeneous and heterogeneous vegetation canopies as well as from actual TLS point cloud acquired from Estonian Birch, Pine, and Spruce stands. Our findings revealed that our estimates were considerably close to the actual <inline-formula><tex-math notation="LaTeX">$u_l$</tex-math></inline-formula> and leaf inclination distribution function (LIDF) values with (<inline-formula><tex-math notation="LaTeX">$\text{Biais}_{u_l} \in [0.001 \; 0.006]$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$\text{RMSE}_{u_l} \in [0.019 \; 0.045]$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$\text{RMSE}_{\text{LIDF}} \in [ 0.019 \; 0.038]$</tex-math></inline-formula>) for homogeneous dataset and (<inline-formula><tex-math notation="LaTeX">$\text{Biais}_{u_l} \in [0.001 \; 0.045]$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$\text{RMSE}_{u_l} \in [0.023 \; 0.078]$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$\text{RMSE}_{\text{LIDF}} \in [ 0.011 \; 0.018]$</tex-math></inline-formula>) for heterogeneous dataset with different tree crown geometries (i.e., conical and elliptical). In the actual case (Birch, Pine, and Spruce stands), our approach with the traditional and novel techniques, <inline-formula><tex-math notation="LaTeX">$\text{RMSE}_{\text{LAI}}$</tex-math></inline-formula> are 0.526 and 0.105, respectively. The results outperform those of the baseline technique (i.e., assuming spherical LAD) with <inline-formula><tex-math notation="LaTeX">$\text{RMSE}_{\text{LAI}}=2.651$</tex-math></inline-formula>.
format article
author Ameni Mkaouar
Abdelaziz Kallel
Zouhaier Ben Rabah
Thouraya Sahli Chahed
author_facet Ameni Mkaouar
Abdelaziz Kallel
Zouhaier Ben Rabah
Thouraya Sahli Chahed
author_sort Ameni Mkaouar
title Joint Estimation of Leaf Area Density and Leaf Angle Distribution Using TLS Point Cloud for Forest Stands
title_short Joint Estimation of Leaf Area Density and Leaf Angle Distribution Using TLS Point Cloud for Forest Stands
title_full Joint Estimation of Leaf Area Density and Leaf Angle Distribution Using TLS Point Cloud for Forest Stands
title_fullStr Joint Estimation of Leaf Area Density and Leaf Angle Distribution Using TLS Point Cloud for Forest Stands
title_full_unstemmed Joint Estimation of Leaf Area Density and Leaf Angle Distribution Using TLS Point Cloud for Forest Stands
title_sort joint estimation of leaf area density and leaf angle distribution using tls point cloud for forest stands
publisher IEEE
publishDate 2021
url https://doaj.org/article/f12f54c2640c432e8acb83dc43099656
work_keys_str_mv AT amenimkaouar jointestimationofleafareadensityandleafangledistributionusingtlspointcloudforforeststands
AT abdelazizkallel jointestimationofleafareadensityandleafangledistributionusingtlspointcloudforforeststands
AT zouhaierbenrabah jointestimationofleafareadensityandleafangledistributionusingtlspointcloudforforeststands
AT thourayasahlichahed jointestimationofleafareadensityandleafangledistributionusingtlspointcloudforforeststands
_version_ 1718425259833556992