Deep neural network-estimated electrocardiographic age as a mortality predictor

The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here, the authors propose that the age predicted by artificial intelligence from the raw ECG tracing can be a measure of cardiovascular health and provide prognostic information.

Guardado en:
Detalles Bibliográficos
Autores principales: Emilly M. Lima, Antônio H. Ribeiro, Gabriela M. M. Paixão, Manoel Horta Ribeiro, Marcelo M. Pinto-Filho, Paulo R. Gomes, Derick M. Oliveira, Ester C. Sabino, Bruce B. Duncan, Luana Giatti, Sandhi M. Barreto, Wagner Meira Jr, Thomas B. Schön, Antonio Luiz P. Ribeiro
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f1364f686bf341b4863accec047f7a93
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f1364f686bf341b4863accec047f7a93
record_format dspace
spelling oai:doaj.org-article:f1364f686bf341b4863accec047f7a932021-12-02T15:09:10ZDeep neural network-estimated electrocardiographic age as a mortality predictor10.1038/s41467-021-25351-72041-1723https://doaj.org/article/f1364f686bf341b4863accec047f7a932021-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25351-7https://doaj.org/toc/2041-1723The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here, the authors propose that the age predicted by artificial intelligence from the raw ECG tracing can be a measure of cardiovascular health and provide prognostic information.Emilly M. LimaAntônio H. RibeiroGabriela M. M. PaixãoManoel Horta RibeiroMarcelo M. Pinto-FilhoPaulo R. GomesDerick M. OliveiraEster C. SabinoBruce B. DuncanLuana GiattiSandhi M. BarretoWagner Meira JrThomas B. SchönAntonio Luiz P. RibeiroNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Emilly M. Lima
Antônio H. Ribeiro
Gabriela M. M. Paixão
Manoel Horta Ribeiro
Marcelo M. Pinto-Filho
Paulo R. Gomes
Derick M. Oliveira
Ester C. Sabino
Bruce B. Duncan
Luana Giatti
Sandhi M. Barreto
Wagner Meira Jr
Thomas B. Schön
Antonio Luiz P. Ribeiro
Deep neural network-estimated electrocardiographic age as a mortality predictor
description The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here, the authors propose that the age predicted by artificial intelligence from the raw ECG tracing can be a measure of cardiovascular health and provide prognostic information.
format article
author Emilly M. Lima
Antônio H. Ribeiro
Gabriela M. M. Paixão
Manoel Horta Ribeiro
Marcelo M. Pinto-Filho
Paulo R. Gomes
Derick M. Oliveira
Ester C. Sabino
Bruce B. Duncan
Luana Giatti
Sandhi M. Barreto
Wagner Meira Jr
Thomas B. Schön
Antonio Luiz P. Ribeiro
author_facet Emilly M. Lima
Antônio H. Ribeiro
Gabriela M. M. Paixão
Manoel Horta Ribeiro
Marcelo M. Pinto-Filho
Paulo R. Gomes
Derick M. Oliveira
Ester C. Sabino
Bruce B. Duncan
Luana Giatti
Sandhi M. Barreto
Wagner Meira Jr
Thomas B. Schön
Antonio Luiz P. Ribeiro
author_sort Emilly M. Lima
title Deep neural network-estimated electrocardiographic age as a mortality predictor
title_short Deep neural network-estimated electrocardiographic age as a mortality predictor
title_full Deep neural network-estimated electrocardiographic age as a mortality predictor
title_fullStr Deep neural network-estimated electrocardiographic age as a mortality predictor
title_full_unstemmed Deep neural network-estimated electrocardiographic age as a mortality predictor
title_sort deep neural network-estimated electrocardiographic age as a mortality predictor
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f1364f686bf341b4863accec047f7a93
work_keys_str_mv AT emillymlima deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT antoniohribeiro deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT gabrielammpaixao deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT manoelhortaribeiro deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT marcelompintofilho deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT paulorgomes deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT derickmoliveira deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT estercsabino deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT brucebduncan deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT luanagiatti deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT sandhimbarreto deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT wagnermeirajr deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT thomasbschon deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
AT antonioluizpribeiro deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor
_version_ 1718387912769273856