Deep neural network-estimated electrocardiographic age as a mortality predictor
The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here, the authors propose that the age predicted by artificial intelligence from the raw ECG tracing can be a measure of cardiovascular health and provide prognostic information.
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f1364f686bf341b4863accec047f7a93 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f1364f686bf341b4863accec047f7a93 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f1364f686bf341b4863accec047f7a932021-12-02T15:09:10ZDeep neural network-estimated electrocardiographic age as a mortality predictor10.1038/s41467-021-25351-72041-1723https://doaj.org/article/f1364f686bf341b4863accec047f7a932021-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25351-7https://doaj.org/toc/2041-1723The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here, the authors propose that the age predicted by artificial intelligence from the raw ECG tracing can be a measure of cardiovascular health and provide prognostic information.Emilly M. LimaAntônio H. RibeiroGabriela M. M. PaixãoManoel Horta RibeiroMarcelo M. Pinto-FilhoPaulo R. GomesDerick M. OliveiraEster C. SabinoBruce B. DuncanLuana GiattiSandhi M. BarretoWagner Meira JrThomas B. SchönAntonio Luiz P. RibeiroNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Emilly M. Lima Antônio H. Ribeiro Gabriela M. M. Paixão Manoel Horta Ribeiro Marcelo M. Pinto-Filho Paulo R. Gomes Derick M. Oliveira Ester C. Sabino Bruce B. Duncan Luana Giatti Sandhi M. Barreto Wagner Meira Jr Thomas B. Schön Antonio Luiz P. Ribeiro Deep neural network-estimated electrocardiographic age as a mortality predictor |
description |
The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here, the authors propose that the age predicted by artificial intelligence from the raw ECG tracing can be a measure of cardiovascular health and provide prognostic information. |
format |
article |
author |
Emilly M. Lima Antônio H. Ribeiro Gabriela M. M. Paixão Manoel Horta Ribeiro Marcelo M. Pinto-Filho Paulo R. Gomes Derick M. Oliveira Ester C. Sabino Bruce B. Duncan Luana Giatti Sandhi M. Barreto Wagner Meira Jr Thomas B. Schön Antonio Luiz P. Ribeiro |
author_facet |
Emilly M. Lima Antônio H. Ribeiro Gabriela M. M. Paixão Manoel Horta Ribeiro Marcelo M. Pinto-Filho Paulo R. Gomes Derick M. Oliveira Ester C. Sabino Bruce B. Duncan Luana Giatti Sandhi M. Barreto Wagner Meira Jr Thomas B. Schön Antonio Luiz P. Ribeiro |
author_sort |
Emilly M. Lima |
title |
Deep neural network-estimated electrocardiographic age as a mortality predictor |
title_short |
Deep neural network-estimated electrocardiographic age as a mortality predictor |
title_full |
Deep neural network-estimated electrocardiographic age as a mortality predictor |
title_fullStr |
Deep neural network-estimated electrocardiographic age as a mortality predictor |
title_full_unstemmed |
Deep neural network-estimated electrocardiographic age as a mortality predictor |
title_sort |
deep neural network-estimated electrocardiographic age as a mortality predictor |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f1364f686bf341b4863accec047f7a93 |
work_keys_str_mv |
AT emillymlima deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT antoniohribeiro deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT gabrielammpaixao deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT manoelhortaribeiro deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT marcelompintofilho deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT paulorgomes deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT derickmoliveira deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT estercsabino deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT brucebduncan deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT luanagiatti deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT sandhimbarreto deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT wagnermeirajr deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT thomasbschon deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor AT antonioluizpribeiro deepneuralnetworkestimatedelectrocardiographicageasamortalitypredictor |
_version_ |
1718387912769273856 |