Deep neural network-estimated electrocardiographic age as a mortality predictor
The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here, the authors propose that the age predicted by artificial intelligence from the raw ECG tracing can be a measure of cardiovascular health and provide prognostic information.
Enregistré dans:
| Auteurs principaux: | Emilly M. Lima, Antônio H. Ribeiro, Gabriela M. M. Paixão, Manoel Horta Ribeiro, Marcelo M. Pinto-Filho, Paulo R. Gomes, Derick M. Oliveira, Ester C. Sabino, Bruce B. Duncan, Luana Giatti, Sandhi M. Barreto, Wagner Meira Jr, Thomas B. Schön, Antonio Luiz P. Ribeiro |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/f1364f686bf341b4863accec047f7a93 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Automatic diagnosis of the 12-lead ECG using a deep neural network
par: Antônio H. Ribeiro, et autres
Publié: (2020) -
Author Correction: Automatic diagnosis of the 12-lead ECG using a deep neural network
par: Antônio H. Ribeiro, et autres
Publié: (2020) -
Electrocardiographic predictors of early recurrence of atrial fibrillation
par: Ji‐Hoon Choi, et autres
Publié: (2021) -
Electrocardiographic examination in calves: a preliminary study
par: Rocky La Maestra, et autres
Publié: (2021) -
Standardizing electrocardiographic and arterial pressure parameters in creole horses of the Bogotá Savannah
par: P. P. Martínez Padua, et autres
Publié: (2019)