Deep neural network-estimated electrocardiographic age as a mortality predictor
The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here, the authors propose that the age predicted by artificial intelligence from the raw ECG tracing can be a measure of cardiovascular health and provide prognostic information.
Guardado en:
Autores principales: | Emilly M. Lima, Antônio H. Ribeiro, Gabriela M. M. Paixão, Manoel Horta Ribeiro, Marcelo M. Pinto-Filho, Paulo R. Gomes, Derick M. Oliveira, Ester C. Sabino, Bruce B. Duncan, Luana Giatti, Sandhi M. Barreto, Wagner Meira Jr, Thomas B. Schön, Antonio Luiz P. Ribeiro |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f1364f686bf341b4863accec047f7a93 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic diagnosis of the 12-lead ECG using a deep neural network
por: Antônio H. Ribeiro, et al.
Publicado: (2020) -
Author Correction: Automatic diagnosis of the 12-lead ECG using a deep neural network
por: Antônio H. Ribeiro, et al.
Publicado: (2020) -
Electrocardiographic predictors of early recurrence of atrial fibrillation
por: Ji‐Hoon Choi, et al.
Publicado: (2021) -
Electrocardiographic examination in calves: a preliminary study
por: Rocky La Maestra, et al.
Publicado: (2021) -
Standardizing electrocardiographic and arterial pressure parameters in creole horses of the Bogotá Savannah
por: P. P. Martínez Padua, et al.
Publicado: (2019)