Adaptive stochastic resonance for unknown and variable input signals
Abstract All sensors have a threshold, defined by the smallest signal amplitude that can be detected. The detection of sub-threshold signals, however, is possible by using the principle of stochastic resonance, where noise is added to the input signal so that it randomly exceeds the sensor threshold...
Enregistré dans:
Auteurs principaux: | Patrick Krauss, Claus Metzner, Achim Schilling, Christian Schütz, Konstantin Tziridis, Ben Fabry, Holger Schulze |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f136b21fce664103affdd5c445506309 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Simulated transient hearing loss improves auditory sensitivity
par: Patrick Krauss, et autres
Publié: (2021) -
Attack Detection and Defense System Using an Unknown Input Observer for Cooperative Adaptive Cruise Control Systems
par: Yudai Yamamoto, et autres
Publié: (2021) -
Stochastic resonance in MoS2 photodetector
par: Akhil Dodda, et autres
Publié: (2020) -
Multi-Frequency Weak Signal Decomposition and Reconstruction of Rolling Bearing Based on Adaptive Cascaded Stochastic Resonance
par: Di Xu, et autres
Publié: (2021) -
Bayesian model selection for complex dynamic systems
par: Christoph Mark, et autres
Publié: (2018)