Automated segmentation of macular edema for the diagnosis of ocular disease using deep learning method
Abstract Macular edema is considered as a major cause of visual loss and blindness in patients with ocular fundus diseases. Optical coherence tomography (OCT) is a non-invasive imaging technique, which has been widely applied for diagnosing macular edema due to its non-invasive and high resolution p...
Enregistré dans:
Auteurs principaux: | Zhenhua Wang, Yuanfu Zhong, Mudi Yao, Yan Ma, Wenping Zhang, Chaopeng Li, Zhifu Tao, Qin Jiang, Biao Yan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f13d960fe6d44a629795d16f6cc1d629 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Cystoid macular edema
par: Tryfon G Rotsos, et autres
Publié: (2008) -
Predictive clinical factors of cystoid macular edema in patients with Descemet’s stripping automated endothelial keratoplasty
par: Koji Kitazawa, et autres
Publié: (2017) -
Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading
par: Jaakko Sahlsten, et autres
Publié: (2019) -
Multi-view convolutional neural networks for automated ocular structure and tumor segmentation in retinoblastoma
par: Victor I. J. Strijbis, et autres
Publié: (2021) -
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
par: Sajith Kecheril Sadanandan, et autres
Publié: (2017)