The effects of unburned-gas temperature on intrinsic instability of premixed flames at high Lewis numbers under the adiabatic and non-adiabatic conditions

We treated numerically premixed flames at high Lewis numbers under the adiabatic and non-adiabatic conditions to elucidate the effects of unburned-gas temperature on intrinsic instability. Numerical calculations of two-dimensional unsteady reactive flow were performed, based on the compressible Navi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Thwe Thwe Aung, Toshiyuki KATSUMI, Satoshi KADOWAKI
Formato: article
Lenguaje:EN
Publicado: The Japan Society of Mechanical Engineers 2017
Materias:
Acceso en línea:https://doaj.org/article/f147b1d80f9c41f6b33d4252e58ece9f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f147b1d80f9c41f6b33d4252e58ece9f
record_format dspace
spelling oai:doaj.org-article:f147b1d80f9c41f6b33d4252e58ece9f2021-11-26T07:02:12ZThe effects of unburned-gas temperature on intrinsic instability of premixed flames at high Lewis numbers under the adiabatic and non-adiabatic conditions2187-974510.1299/mej.16-00477https://doaj.org/article/f147b1d80f9c41f6b33d4252e58ece9f2017-03-01T00:00:00Zhttps://www.jstage.jst.go.jp/article/mej/4/2/4_16-00477/_pdf/-char/enhttps://doaj.org/toc/2187-9745We treated numerically premixed flames at high Lewis numbers under the adiabatic and non-adiabatic conditions to elucidate the effects of unburned-gas temperature on intrinsic instability. Numerical calculations of two-dimensional unsteady reactive flow were performed, based on the compressible Navier-Stokes equation including one-step chemical reaction. Lewis numbers higher than unity were adopted, and radiative heat loss was employed. Superimposing a sinusoidal disturbance with sufficiently small amplitude on a stationary planar flame, we obtained the relation between the growth rate and wave number, so-called dispersion relation. When the Lewis number was higher than unity, the growth rate was small and the unstable range was narrow, compared with premixed flames at Lewis number of unity, which was because of the weakness of intrinsic instability due to diffusive-thermal effects. As the unburned-gas temperature became higher, the growth rate increased and the unstable range widened. This was because of the increase of the burning velocity of a planar flame. Taking account of radiative heat loss, we obtained small growth rates and narrow unstable range. To study the characteristics of cellular flames generated by intrinsic instability, we superimposed a disturbance with the critical wave number corresponding to the maximum growth rate. The superimposed disturbance evolved, and a cellular flame formed. The burning velocity of a cellular flame normalized by that of a planar flame decreased as the unburned-gas temperature became higher. As the heat loss became larger, the normalized burning velocity of a cellular flame decreased. This indicated that the heat loss inhibited the instability of premixed flames at high Lewis numbers.Thwe Thwe AungToshiyuki KATSUMISatoshi KADOWAKIThe Japan Society of Mechanical Engineersarticlepremixed flameintrinsic instabilityhigh lewis numberunburned-gas temperatureheat lossdispersion relationburning velocityMechanical engineering and machineryTJ1-1570ENMechanical Engineering Journal, Vol 4, Iss 2, Pp 16-00477-16-00477 (2017)
institution DOAJ
collection DOAJ
language EN
topic premixed flame
intrinsic instability
high lewis number
unburned-gas temperature
heat loss
dispersion relation
burning velocity
Mechanical engineering and machinery
TJ1-1570
spellingShingle premixed flame
intrinsic instability
high lewis number
unburned-gas temperature
heat loss
dispersion relation
burning velocity
Mechanical engineering and machinery
TJ1-1570
Thwe Thwe Aung
Toshiyuki KATSUMI
Satoshi KADOWAKI
The effects of unburned-gas temperature on intrinsic instability of premixed flames at high Lewis numbers under the adiabatic and non-adiabatic conditions
description We treated numerically premixed flames at high Lewis numbers under the adiabatic and non-adiabatic conditions to elucidate the effects of unburned-gas temperature on intrinsic instability. Numerical calculations of two-dimensional unsteady reactive flow were performed, based on the compressible Navier-Stokes equation including one-step chemical reaction. Lewis numbers higher than unity were adopted, and radiative heat loss was employed. Superimposing a sinusoidal disturbance with sufficiently small amplitude on a stationary planar flame, we obtained the relation between the growth rate and wave number, so-called dispersion relation. When the Lewis number was higher than unity, the growth rate was small and the unstable range was narrow, compared with premixed flames at Lewis number of unity, which was because of the weakness of intrinsic instability due to diffusive-thermal effects. As the unburned-gas temperature became higher, the growth rate increased and the unstable range widened. This was because of the increase of the burning velocity of a planar flame. Taking account of radiative heat loss, we obtained small growth rates and narrow unstable range. To study the characteristics of cellular flames generated by intrinsic instability, we superimposed a disturbance with the critical wave number corresponding to the maximum growth rate. The superimposed disturbance evolved, and a cellular flame formed. The burning velocity of a cellular flame normalized by that of a planar flame decreased as the unburned-gas temperature became higher. As the heat loss became larger, the normalized burning velocity of a cellular flame decreased. This indicated that the heat loss inhibited the instability of premixed flames at high Lewis numbers.
format article
author Thwe Thwe Aung
Toshiyuki KATSUMI
Satoshi KADOWAKI
author_facet Thwe Thwe Aung
Toshiyuki KATSUMI
Satoshi KADOWAKI
author_sort Thwe Thwe Aung
title The effects of unburned-gas temperature on intrinsic instability of premixed flames at high Lewis numbers under the adiabatic and non-adiabatic conditions
title_short The effects of unburned-gas temperature on intrinsic instability of premixed flames at high Lewis numbers under the adiabatic and non-adiabatic conditions
title_full The effects of unburned-gas temperature on intrinsic instability of premixed flames at high Lewis numbers under the adiabatic and non-adiabatic conditions
title_fullStr The effects of unburned-gas temperature on intrinsic instability of premixed flames at high Lewis numbers under the adiabatic and non-adiabatic conditions
title_full_unstemmed The effects of unburned-gas temperature on intrinsic instability of premixed flames at high Lewis numbers under the adiabatic and non-adiabatic conditions
title_sort effects of unburned-gas temperature on intrinsic instability of premixed flames at high lewis numbers under the adiabatic and non-adiabatic conditions
publisher The Japan Society of Mechanical Engineers
publishDate 2017
url https://doaj.org/article/f147b1d80f9c41f6b33d4252e58ece9f
work_keys_str_mv AT thwethweaung theeffectsofunburnedgastemperatureonintrinsicinstabilityofpremixedflamesathighlewisnumbersundertheadiabaticandnonadiabaticconditions
AT toshiyukikatsumi theeffectsofunburnedgastemperatureonintrinsicinstabilityofpremixedflamesathighlewisnumbersundertheadiabaticandnonadiabaticconditions
AT satoshikadowaki theeffectsofunburnedgastemperatureonintrinsicinstabilityofpremixedflamesathighlewisnumbersundertheadiabaticandnonadiabaticconditions
AT thwethweaung effectsofunburnedgastemperatureonintrinsicinstabilityofpremixedflamesathighlewisnumbersundertheadiabaticandnonadiabaticconditions
AT toshiyukikatsumi effectsofunburnedgastemperatureonintrinsicinstabilityofpremixedflamesathighlewisnumbersundertheadiabaticandnonadiabaticconditions
AT satoshikadowaki effectsofunburnedgastemperatureonintrinsicinstabilityofpremixedflamesathighlewisnumbersundertheadiabaticandnonadiabaticconditions
_version_ 1718409754539196416