Single-Trial MEG Data Can Be Denoised Through Cross-Subject Predictive Modeling
A pervasive challenge in brain imaging is the presence of noise that hinders investigation of underlying neural processes, with Magnetoencephalography (MEG) in particular having very low Signal-to-Noise Ratio (SNR). The established strategy to increase MEG's SNR involves averaging multiple repe...
Guardado en:
Autores principales: | Srinivas Ravishankar, Mariya Toneva, Leila Wehbe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f154222573404fb6933ed163550aec8f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Concurrent Video Denoising and Deblurring for Dynamic Scenes
por: Efklidis Katsaros, et al.
Publicado: (2021) -
Cross-Modal Guidance Assisted Hierarchical Learning Based Siamese Network for MR Image Denoising
por: Rabia Naseem, et al.
Publicado: (2021) -
A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
por: Minghuan Hu, et al.
Publicado: (2021) -
Spatial sampling of MEG and EEG based on generalized spatial-frequency analysis and optimal design
por: Joonas Iivanainen, et al.
Publicado: (2021) -
lncRNA MEG8 Upregulates miR-770-5p Through Methylation and Promotes Cell Apoptosis in Diabetic Nephropathy
por: Zhang J, et al.
Publicado: (2020)