Fuzzy adaptive state-feedback control for a revolute-prismatic-revolute robot manipulator
In this work, a fuzzy adaptive state-feedback control is designed for the stabilization of a three-degree of freedom revolute-prismatic-revolute (RPR) robot manipulator. At first, the forward kinematic equations are derived and its workspace is investigated. The Lagrange method is applied to find th...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f163aea4219244579f16f72b5fb56e64 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f163aea4219244579f16f72b5fb56e64 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f163aea4219244579f16f72b5fb56e642021-11-04T15:51:57ZFuzzy adaptive state-feedback control for a revolute-prismatic-revolute robot manipulator2331-191610.1080/23311916.2019.1698690https://doaj.org/article/f163aea4219244579f16f72b5fb56e642019-01-01T00:00:00Zhttp://dx.doi.org/10.1080/23311916.2019.1698690https://doaj.org/toc/2331-1916In this work, a fuzzy adaptive state-feedback control is designed for the stabilization of a three-degree of freedom revolute-prismatic-revolute (RPR) robot manipulator. At first, the forward kinematic equations are derived and its workspace is investigated. The Lagrange method is applied to find the dynamical equations, and the inverse dynamic approach is utilized to design a state-feedback controller for the regulation of the joint positions. The gradient descent scheme and the sliding surface relations are implemented to adaptively define the control gains. Moreover, a fuzzy system based on the linguistic if-then rules is used to tune the control parameters. The time responses of the joint variables for the introduced scenario are simulated and compared with those of other recently published methods.N. NejadkourkiM. J. MahmoodabadiTaylor & Francis Grouparticlestate-feedback controladaptive controlfuzzy systemmanipulatorworkspacedynamical equationsEngineering (General). Civil engineering (General)TA1-2040ENCogent Engineering, Vol 6, Iss 1 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
state-feedback control adaptive control fuzzy system manipulator workspace dynamical equations Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
state-feedback control adaptive control fuzzy system manipulator workspace dynamical equations Engineering (General). Civil engineering (General) TA1-2040 N. Nejadkourki M. J. Mahmoodabadi Fuzzy adaptive state-feedback control for a revolute-prismatic-revolute robot manipulator |
description |
In this work, a fuzzy adaptive state-feedback control is designed for the stabilization of a three-degree of freedom revolute-prismatic-revolute (RPR) robot manipulator. At first, the forward kinematic equations are derived and its workspace is investigated. The Lagrange method is applied to find the dynamical equations, and the inverse dynamic approach is utilized to design a state-feedback controller for the regulation of the joint positions. The gradient descent scheme and the sliding surface relations are implemented to adaptively define the control gains. Moreover, a fuzzy system based on the linguistic if-then rules is used to tune the control parameters. The time responses of the joint variables for the introduced scenario are simulated and compared with those of other recently published methods. |
format |
article |
author |
N. Nejadkourki M. J. Mahmoodabadi |
author_facet |
N. Nejadkourki M. J. Mahmoodabadi |
author_sort |
N. Nejadkourki |
title |
Fuzzy adaptive state-feedback control for a revolute-prismatic-revolute robot manipulator |
title_short |
Fuzzy adaptive state-feedback control for a revolute-prismatic-revolute robot manipulator |
title_full |
Fuzzy adaptive state-feedback control for a revolute-prismatic-revolute robot manipulator |
title_fullStr |
Fuzzy adaptive state-feedback control for a revolute-prismatic-revolute robot manipulator |
title_full_unstemmed |
Fuzzy adaptive state-feedback control for a revolute-prismatic-revolute robot manipulator |
title_sort |
fuzzy adaptive state-feedback control for a revolute-prismatic-revolute robot manipulator |
publisher |
Taylor & Francis Group |
publishDate |
2019 |
url |
https://doaj.org/article/f163aea4219244579f16f72b5fb56e64 |
work_keys_str_mv |
AT nnejadkourki fuzzyadaptivestatefeedbackcontrolforarevoluteprismaticrevoluterobotmanipulator AT mjmahmoodabadi fuzzyadaptivestatefeedbackcontrolforarevoluteprismaticrevoluterobotmanipulator |
_version_ |
1718444686576713728 |