A nonlinear updating algorithm captures suboptimal inference in the presence of signal-dependent noise
Abstract Bayesian models have advanced the idea that humans combine prior beliefs and sensory observations to optimize behavior. How the brain implements Bayes-optimal inference, however, remains poorly understood. Simple behavioral tasks suggest that the brain can flexibly represent probability dis...
Guardado en:
Autores principales: | Seth W. Egger, Mehrdad Jazayeri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f163ec5b6de640b5b546097fecc19846 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Human noise blindness drives suboptimal cognitive inference
por: Santiago Herce Castañón, et al.
Publicado: (2019) -
On the origins of suboptimality in human probabilistic inference.
por: Luigi Acerbi, et al.
Publicado: (2014) -
Biased belief updating and suboptimal choice in foraging decisions
por: Neil Garrett, et al.
Publicado: (2020) -
A neural circuit model for human sensorimotor timing
por: Seth W. Egger, et al.
Publicado: (2020) -
Late Bayesian inference in mental transformations
por: Evan D. Remington, et al.
Publicado: (2018)