Application of a new hybrid model with seasonal auto-regressive integrated moving average (ARIMA) and nonlinear auto-regressive neural network (NARNN) in forecasting incidence cases of HFMD in Shenzhen, China.
<h4>Background</h4>Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early...
Guardado en:
Autores principales: | Lijing Yu, Lingling Zhou, Li Tan, Hongbo Jiang, Ying Wang, Sheng Wei, Shaofa Nie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f16b217cc5ef4c228d51c9bdacccc9b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Innovative time series forecasting: auto regressive moving average vs deep networks
por: Anthony Mouraud
Publicado: (2017) -
Peramalan Inflasi Indonesia Dengan Seasonal Auto Regressive Integrated Moving Average
por: Gagah Lanang Ramadhan, et al.
Publicado: (2021) -
A comparative study of SIR Model, Linear Regression, Logistic Function and ARIMA Model for forecasting COVID-19 cases
por: Saina Abolmaali, et al.
Publicado: (2021) -
Nonlinear ARIMA Models with Feedback SVR in Financial Market Forecasting
por: Shiwei Su
Publicado: (2021) -
Pairwise difference regressions are just weighted averages
por: Carlos Góes
Publicado: (2021)