Determination of Trace Metal (Mn, Fe, Ni, Cu, Zn, Co, Cd and Pb) Concentrations in Seawater Using Single Quadrupole ICP-MS: A Comparison between Offline and Online Preconcentration Setups
The quantification of dissolved metals in seawater requires pre-treatment before the measurement can be done, posing a risk of contamination, and requiring a time-consuming procedure. Despite the development of automated preconcentration units and sophisticated instruments, the entire process often...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
MDPI AG
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/f16f49ded3f24dcbbd94b6873fecade4 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The quantification of dissolved metals in seawater requires pre-treatment before the measurement can be done, posing a risk of contamination, and requiring a time-consuming procedure. Despite the development of automated preconcentration units and sophisticated instruments, the entire process often introduces inaccuracies in quantification, especially for low-metal seawaters. This study presents a robust method for measuring dissolved metals from seawater accurately and precisely using a sea<i>FAST</i> and quadrupole Inductively Coupled Plasma Mass Spectrometer (ICPMS), employed in both offline (2016–2018) and online (2020–2021) setups. The proposed method shows data processing, including the re-calculation of metals after eliminating the instrumental signals caused by polyatomic interferences. Here, we report the blank concentration of Fe below 0.02 nmol kg<sup>−1</sup>, somewhat lower values than that have been previously reported using high-resolution and triple-quad ICPMS. The method allows for the accurate determination of Cd and Fe concentrations in low-metal seawaters, such as GEOTRACES GSP, using a cost-effective quadrupole ICPMS (Cd<sub>consensus</sub>: 2 ± 2 pmol kg<sup>−1</sup>, Cd<sub>measured</sub>: 0.99 ± 0.35 pmol kg<sup>−1</sup>; Fe<sub>consensus</sub>: 0.16 ± 0.05 nmol kg<sup>−1</sup>, Fe<sub>measured</sub>: 0.21 ± 0.03 nmol kg<sup>−1</sup>). Between two setups, online yields marginally lower blank values for metals based on short-term analysis. However, the limit of detection is comparable between the two, supporting optimal instrumental sensitivity of the ICPMS over 4+ years of analysis. |
---|