Tactical Decision-Making for Autonomous Driving Using Dueling Double Deep Q Network With Double Attention
Decision-making is still a significant challenge to realize fully autonomous driving. Using deep reinforcement learning (DRL) to solve autonomous driving decision-making problems is a recent trend. A common method is to encode surrounding vehicles in a grid to describe the state space to help DRL ne...
Guardado en:
Autores principales: | Shuwei Zhang, Yutian Wu, Harutoshi Ogai, Hiroshi Inujima, Shigeyuki Tateno |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f187f625b58e4ec29438dc584887e503 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
GourmetNet: Food Segmentation Using Multi-Scale Waterfall Features with Spatial and Channel Attention
por: Udit Sharma, et al.
Publicado: (2021) -
INFLUENCE OF SMARTPHONES ON STUDENTS` ATTENTIONAL PROCESSES
por: M. A. Akopova
Publicado: (2020) -
S2A: Scale-Attention-Aware Networks for Video Super-Resolution
por: Taian Guo, et al.
Publicado: (2021) -
Towards the Unified Principles for Level 5 Autonomous Vehicles
por: Jianqiang Wang, et al.
Publicado: (2021) -
Designing of brake timing of autonomous emergency braking system to avoid collision to pedestrians
por: Keisuke SUZUKI, et al.
Publicado: (2017)