A semi high-throughput method for screening small bispecific antibodies with high cytotoxicity

Abstract Small bispecific antibodies that induce T-cell–mediated cytotoxicity have the potential to damage late-stage tumor masses to a clinically relevant degree, but their cytotoxicity is critically dependent on their structural and functional properties. Here, we constructed an optimized procedur...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aruto Sugiyama, Mitsuo Umetsu, Hikaru Nakazawa, Teppei Niide, Tomoko Onodera, Katsuhiro Hosokawa, Shuhei Hattori, Ryutaro Asano, Izumi Kumagai
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f18cb9ec074743a0b52efdd168550715
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Small bispecific antibodies that induce T-cell–mediated cytotoxicity have the potential to damage late-stage tumor masses to a clinically relevant degree, but their cytotoxicity is critically dependent on their structural and functional properties. Here, we constructed an optimized procedure for identifying highly cytotoxic antibodies from a variety of the T-cell–recruiting antibodies engineered from a series of antibodies against cancer antigens of epidermal growth factor receptor family and T-cell receptors. By developing and applying a set of rapid operations for expression vector construction and protein preparation, we screened the cytotoxicity of 104 small antibodies with diabody format and identified some with 103-times higher cytotoxicity than that of previously reported active diabody. The results demonstrate that cytotoxicity is enhanced by synergistic effects between the target, epitope, binding affinity, and the order of heavy-chain and light-chain variable domains. We demonstrate the importance of screening to determine the critical rules for highly cytotoxic antibodies.